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Be Physical

How to Model Material and lllumination




Be Physical: 3DTopia-XL ) 30m0pia/ 30Topia Xt

3DTopia-XL: High-Quality 3D PBR Asset Generation via Primitive Diffusion


https://github.com/3DTopia/3DTopia-XL
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Challenges

» High-resolution Generative 3D Representation

= Parameter-efficient
= Surface-only
= As compact as possible
= Scalable Tokenization
= Rapid tensorization from input
= Reversible conversion to GLB mesh

» Differentiable Rendering

» Modelling of Physical Light Transport

= Well-defined Geometry

Previous SOTA

= PBR (Physically Based Rendering) Materials
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3DTopia-XL: A Native 3D Diffusion Model for PBR Asset

SINGAPORE INTELLIGENCE

“A cute unicorn”

A Single Image / Texts High-quality 3D Asset Ready for Blender @
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Key Idea: Primitive Diffusion
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Stage |: Geometry, Texture, Materials into NxD Primitives

N Primitives Surface Features in Each Primitive

Position € R3

Scale € R

T
f 3
~Sg 0 =

RGB € R®°*3

Material € R%°*2

Rapid
Tensorization

PrimX : {vk}llgzl € ]RNX(3+1+a3><6) N x D Tensor

Tensorize a Textured Mesh into NxD Primitives
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PBR Asset
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Gallery: Denoising in 5 Seconds
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Gallery: Ready for Graphics Engines
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Be PhySicaI: Neural LightRig O ZexinHe/Neural-LightRig

Neural LightRig: Unlocking Accurate Object Normal and Material Estimation with
Multi-Light Diffusion


https://github.com/ZexinHe/Neural-LightRig
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A Long-Standing Challenge — Inverse Rendering

» Estimating geometry & materials from
a single image is ill-posed and under- camera
CcCO nStraint light source B

light source C

= Complex interaction among geometry,
materials, and environmental lighting

» Traditional methods need photometric
stereo setups!!l — impractical for in-
the-wild images

[1] Robert J. Woodham. Photometric method for determining surface orientation from multiple images. 1989.
[2] Image source: https://www.researchgate.net/profile/Lyndon-Smith-4/publication / igure/fig1/AS:666789923020804@ 986514936/The-principle-of-
photometric-stereo-which-employs-a-single-camera-to-capture-multiple i



https://www.researchgate.net/profile/Lyndon-Smith-4/publication/325473321/figure/fig1/AS:666789923020804@1535986514936/The-principle-of-photometric-stereo-which-employs-a-single-camera-to-capture-multiple_W640.jpg
https://www.researchgate.net/profile/Lyndon-Smith-4/publication/325473321/figure/fig1/AS:666789923020804@1535986514936/The-principle-of-photometric-stereo-which-employs-a-single-camera-to-capture-multiple_W640.jpg
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Insights

= Diffusion models can generate
consistent multi-view images!’ p— | z

= Relighting diffusion models can
synthesize images under various
lighting conditions!?!

= Relit images reveal different aspects
of geometry & material — reducing
ambiguity

[1] Ruoxi Shi, et al. Zero123++: A single image to consistent multi-view diffusion base model. 2023.
[2] Lvmin Zhang, et al. Scaling In-the-Wild Training for Diffusion-based Illumination Harmonization and Editing by Imposing Consistent Light Transport. 2025.
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Methodology

» Multi-Light Diffusion
* Fine-tuning a pre-trained image diffusion model to generate consistent relit images

» These multi-light images enrich information and reduce the inherent uncertainty

» Large G-Buffer Reconstruction

» Feed-forward regression U-Net to estimate geometry and PBR materials

o o Lighting Orientations

I I I I I I I LR E

¥ d ¥

Multi-Light Images

§

- -
- l’

Normal & PBR

Input Image

Denoising U-Net Regression U-Net

Stage |I: Multi-Light Diffusion Stage Il: Large G-Buffer Model
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Quantitative Evaluations

= Surface Normal Estimation

Method | Mean | Median | | 3° 1 5° ¢ 7.5° 4 11.25° ¢ 22.5° 1 30° 1
RGB+X [57] 14.847 13.704 11.676 23.073 35.196 49.829 75.777 86.348
DSINE [2] 9.161 7.457 23.565 41.751 57.596 72.003 90.294 95.297
GeoWizard [16] 8.455 6.926 22.245 40.993 58.457 74.916 93.315 97.162
Marigold [25] 8.652 7.078 25.219 42.289 58.062 72.873 92.326 96.742
StableNormal [53] 8.034 6.568 21.393 43.917 63.740 78.568 93.671 96.785
Ours | 6.413 4.897 | 38.656 56.780 70.938 82.853 95.412 98.063
» PBR Estimation and Single-Image Relighting
Method Albedo Roughness Metallic Relighting Latency
PSNRT RMSE| | PSNRT RMSE| | PSNRT RMSE] | PSNRT SSIM1 LPIPS| | Average Time |
RGB+X [57] 16.26 0.176 19.21 0.134 16.65 0.199 20.78 0.8927 0.0781 15s
Yi. et al [54] 21.10 0.106 16.88 0.180 20.30 0.144 26.47 0.9316 0.0691 S5s
IntrinsicAnything [8] 23.88 0.078 17.25 0.172 22.00 0.134 27.98 0.9474 0.0490 2min
DiLightNet [56] - - - - - - 22.68 0.8751 0.0981 30s
IC-Light [60] - - - - - - 20.29 0.9027 0.0638 1min
Ours 26.62 0.054 \ 23.44 0.085 26.23 0.109 | 30.12 0.9601 0.0371 | 5s
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Surface Normal Estimation

DSINE GeoWizard Marigold StableNormal Ours

e
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PBR Material Estimation

Input RGB-X Yi. etal. IntrinsicAnything  Ours Input RGB-X Yi. etal. IntrinsicAnything  Ours G.T.

e e e e e Y

Albedo
Albedo

Roughness
Roughness

Metallic
Metallic

Albedo
Albedo

Roughness

Roughness

Metallic
Metallic
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Single-Image Relighting ) ME™ | e

RGB-X DiLightNet IC-Light Yi.etal. IntrinsicAnything Ours

Input Environment
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Single-Image Relighting

Input Normal Albedo Roughness Metallic Relit Videos

¥,
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Be Dynamic

How to Model
Dynamic Scenes
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Be Dynamic: DynamlcCIty () 3DTopia/DynamicCity

DynamicCity: Large-Scale 4D Occupancy Generation from Dynamic Scenes


https://github.com/3DTopia/DynamicCity
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Challenges

» |nefficient VAEs for 4D data

» |ow compression

OccSora

= poor reconstruction "

= Suboptimal generation quality Go Straight Turning

. A 1Y
it 4b 4 4 1

Dynamic Object
Generation

» Limited control over the generation

Command-Driven

p rocess Scene Generation s
"L

'

[t

*T=N

Forward Turn Left
."v

“Toen Left § TurnLeﬂ?

v En b

Turn Lo’ Fowar‘é\

[%2]
o
>
O

Trajectory-Gu lded Generation Dvnamlc Object Inpainting Layout-Conditioned Generation

) ) Mw t a l % i‘
) = i 18 i
"“"'»“ ! r —+ ,.; o e
At £ 2 3\—;'
OccSora: 4D Occupancy Generation Models as World Simulators for Autonomous Driving. arXiv 2405.20337.
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DynamicCity: 4D Occupancy Generation

o HexPlane
it c(p)
] = W, 4
= g Iy :L - -
, —> Head —»
; Q
. . E Hadamard
S I
S Product
> Class
. Probabilities

(a) Learning HexPlane as an Efficient 4D Scene Representatlon

Diffusion

N
AN

i
i . it

4D Scene T | - Denoising

4D Scene T,

(b) HexPlane Diffusion with DiT for 4D Scene Generation
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Occ3D-Waymo

LR

CarlaSC
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Conditional 4D Generation

Layout-conditioned

Inpainting
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Trajectory-conditioned

Outpainting
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Be Dynamic: CityDreamer4D () hadie/CityDreameraD

CityDreamer4D: Compositional Generative Model of Unbounded 4D Cities


https://github.com/hzxie/CityDreamer4D
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Challenges

Multi-view Inconsistency Limited Diversity

Lack Global Scene Context No Available Annotated 4D Data

Image-based Neural 3D-based

[1] Wonderjourney: Going from Anywhere to Everywhere. CVPR 2024.
[2] CityX: Controllable Procedural Content Generation for Unbounded 3D Cities. arXiv 2407.17572.
[3] DimensionX: Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion. arXiv 2411.04928.
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UNREAL
ENGINE

Learning 4D City from 3D Data Annotations
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The CityTopia Dataset B e
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Be Social
World How to Model Social
Interactions
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Be Social: SOLAMI

SOLAMI: Social Vision-Language-Action Modeling for Immersive
Interaction with 3D Autonomous Characters
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3D Characters with Social Intelligence

* Modeling with LLM-Agent Framework = Limitations
» Scalable Formulation
» Multimodal Coherence

[1]

= Latency

200 v

s k| 5"3-%?13‘?%1"{7
it A S hutlE TS oSy

x = AN g © o -
=TT -SSR T —— Y X 1 S SIS PP

“Cozy Night”

oject Generative Agents

Life Pr
[2]

Digital

[1] Generative Agents: Interactive Simulacra of Human Behavior. UIST 2023.
[2] Digital Life Project: Autonomous 3D Characters with Social Intelligence. CVPR 2024.
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Internet-Scale VQA + Robot Action Data Vision-Language-Action Models for Robot Control Closed-Loop
Q: What is happe! — i Robot Control
E t is happening ): What sh ot
in the lmage? PO RT'Z

A grey donkey walks_)
down the street. @

RO bot Q: ?::;;:‘-S;i faire avec m ViT ——
3D Agent with Real Embodiment DR 1 |
De—o

(Real-world Task & Interaction) I‘q T -
- r I

[ ATranslation = [0.1, -0.2, 0]

ARotation = [10] 25} -7°] Co-Fine-Tune Deploy

RT-2 M:Vision-Language-Action Models

Immersive VR an el
OUTPUT | a t s h.]m‘c((rv SR s aetow o
digital friend!”

Interface [ character << RIS

3D Avatar
3D Agent with Virtual Embodiment
(Natural Appearance & Behavior)

Social VLA
Modeling

Social VLA for Immersive Interaction with 3D Characters

[1] RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control. CoRL 2023.
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Training Recipe

* Training Stages
= Stagel: Motion & Speech e Mstic
Tokenizer Training R D A o]
“uitbom = v B
= Stage2: Motion-Text-Speech e - —
penaining . e ==
‘ e
= Stage3: Instruction Tuning for e =
Multimodal Chat OD@E Text Token () Trans Token [ @8 Body Token bianid Token D@ sveech Token
AT TETFSOLAMI
To efmpowar SOLANM
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Data Generation 955 tversiry | o sovanceo
» Multimodal Chat Data Synthesize
= LLM-Generated Scripts cooooonoooooos | pTmmmmeisiecsoosiieioio oo = ;
! ) | : : GPT-40 assisted Generation b :
= Diverse Topics ' o T '
= Refined Process :
= Motion-Text Dataset vouontos SEEEAR
= Large-Scale 5—--::-,-::-,-;:-,-;',-'E'-}',-'-E'-':'i-'I-E'{-'E'z'{-':'iE'-}'iiij-'{{-'fE'-f-':'E'{-':'E%:- ------ |
 msssts GeneraionPmocsss SynMS! Data Instances



Evaluation: Quantitative & Qualitative @5 BT | BLAS.

= Compared to Speech-Only Method J = v Specet

DLP (MotionGPT)

= Better User Experience . SO“"‘M‘l - I

» Compared to LLM-Agent Framework

Score

-

—
—

» Low Latency & Multimodal Coherence } I

= Alignment Tax on Text

Motion Coherence Motion Interaction Speech Consistency Overall Experience

Table 1. Quantitative results of baselines and SOLAMI. “7°(]’) indicates that the values are better if the metrics are larger (smaller).
We run all the evaluations 5 times and report the average metric. The best results are in bold and the second best results are underlined.

Methods Motion Metrics Speech Metrics Inference !
FID| Diversityl PA-MPJPE| Angle Error] VC Similarity] Context Relevancef Character Consistency? Latency
SynMSI Dataset - 9.136 - - - 4.888 4.893 -
LLM+Speech (Llama2) [69] - - - - 0.818 3.527 3.859 3.157
AnyGPT (fine-tune) [81] - - - - 0.819 3.502 3.803 2.588
DLP (MotionGPT) [17] 4.254 §.259 165.053 0.495 0.812 3.577 3.785 5.518
SOLAMI (w/o pretrain) 5.052 8.558 159.709 0.387 0.820 3.541 3.461 2.657
SOLAMI (LoRA) 15.729 §.145 167.149 0.400 0.770 3.251 3.423 2.710
SOLAMI (full params) 3.443 8.853 151.500 0.360 0.824 3.634 3.824 2.639
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Demo: VR Interface

Network

Comprehension of Body Language Quest Client P e e Server

.il

<>
A
ﬁ@f’.- Vi ¢ )
n%imﬂy

Execution of Motion Comma

) A w
‘\ m é Third-person view
\ ) 4 : First-person view

__ 1
i : ’ﬁ(
Replay inWalé(to phyam@ @{?ngwﬂ{ﬂ}n{ﬁh@m? TEY &2 UL st PURREES ©n SEings




egolife

Be SOCiaI: EgOLife O EvolvingLMMs-Lab/Egolife

A

Egolife: Towards Egocentric Life Assistant


https://github.com/EvolvingLMMs-Lab/EgoLife
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The EgolLife Collected Data o e | LA

missing
signal

DAY],L] A\ \

,egolife,

e b
11:22:30:00 .' |

' .i'_,a

15 fixed third- person-wew V|deos |

\§

A1AKE 1:22:30:00 A2ALICE 1:22:30:00 _ AS_TASHA :30:00 AM_LUCA AS_KATRINA 11:22:30:00
DAY DAY w. DAY1 DAY1 DAY
! : / ~
\ | < T

.. .,
o l

6 egocentric videos
ALL THE EGO AND EXO VIDEOS ARE SYNCRONIZED WITH THE REAL TIME AND DATE.

Ego video, audio, mmwave, wifi, Ego/Exo signals synchronization.
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The Egolife Timeline o By | SR
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< Leisurex49 8 Gamesx46 JJ Music & Dancex45 % Outingx40 # Setupx35 & Meetingx31 & Commutingx15
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The EgoLifeQA Benchmark 6x500=3000QAs

EVEI'ItREI:ﬂ" Past Events of Interest Eﬂtltyl.[lg Past Objects of Interest THSkMHStEF Tasks Assignment and Review

(Day1 21:48:21.200 (Day4 11:34:05.400
' What was the first song mentioned ~ Which price is closest to what we

~ pald for one yogurt?
! A.RMB 2 B. RMB 3
A / C.RMB 4 D. RMB 5

fMany things are in my cart already. What items that we\
previously discussed have | not bought yet?

A. Milk Answer: A. Evidence:
B. Chicken wings | made a shopping list, and
\ C. Strawberries already got frwt etc,, but
D. Bananas :

C. | Wanna Dance Wlth Somebody
D. Never Gonna Give You Up

Answer: B. Evidence:

Answer: A. Evidence: & @Dpayt The yogurt is on sale, RMB19.9 for 6 cups D5- B
\ Shure sang after Jake asked us to dance. %@ 11:46:59.050 \ @ Day 3: 17:00:04.450 Day 5: 16:20:46.350  15:10
é'owo i

What activity do | usually do while drinking coffee? Shure is playing the guitar now. Who else usually joins us )
A. Scrolling through TikTok — - . playing guitar together?
B. Texting on the phone @ A. Choizst . : :
C. Tidying up the room Y AR , B. Jake G C EVIde'nceé)S o g‘lﬁtoaurs V‘V’i'fﬁeihﬁlﬁ
D. Doing Craftwork D1-16:14 D2-10:40 D2-10:52 D4-11:39 C. Nicous  DA17:19 D417:22 D4-2200 D5-2252 20/ "' = 7
- ) | had coffee a total of five times, three D. Lucia frequently than
cay 4: 12:08:50.600 Answer: D. Evidence: of which were while doing crafts... ) kDay 6: 19:50:19.750 anyone else. )

Hahitlnsight Personal Habit Patterns




The EgoLifeQA Benchmark

‘Day4 9: 12pm!
Jake cracks eggs into a bowl
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EgoButIer

Day 1

(Qz What breakfast did we eat in the past three days? If | want to try something new, what is the recommendations?)
v

Day 1 Day 2 Day 3 Day 4 Day 5 Memory Keyword
VoS IDET © PEP@ S
B BEHS o
¥ Y YISy vV 3
Multi-Level
ﬁ Summary
collect w\_/ Multi-Level
Timestamp: Day 1, 1112:23 - 1£12:31 Retrieval
| was operating my phone, then looked up to the left at Jake and Evidence
adjusted my glasses. Jake said, “Here is a stopwatch.” | responded,
“Ok, stamp the time.” We were sitting at a long table with some boxes In the past 3 days, breakfast was either skipped or combined with lunch: 3 days ago, we made pan-fried
and stationery on it. Pictures were hanging on the wall, and there was pancakes, and next we had pizza. Yesterday's meal featured Chinese toon pancakes and dumplings for
also a projector and a whiteboard in the room. the Grain Rain festival. For a new experience, try dim sum, tamagoyaki, or shakshuka.
OO0O0O00O0O00 OO0OOoOooodononn
Egocentric omni-modal model as captioner Egocentric omni-modal model as evidence verifier
EgoGPT
DD D DD DD I:”:l I:l I:”:l I:”:”:I <> I:”:”:I e I:”:”:I </>.- h Q: What breakfast did we eat in
T . o ey ey '
@ @ % @ @ aiip Timestamp: Day 1, 1:12:23 - 111231 the past three days? If | want to
Q: What did | do in the last clip, g7 somethlng. st el f
including both visuals and sounds? recommendations?
(a) Captioning Stage with EQoGPT (b) Question Answering Stage with EQORAG
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EgoButler — The EQOGPT Component

Whisper as audio encoder, SET on EgoIT
LLaVA-OneVision oFT an audio projector on LLaVA-OneVision and Egoli
goLte EgoGPT

Qwen2 with ASR datasets )
(Qwen2 as LLM) that supports audio

Performance of EQoGPT-7B. The table presents a
General paireddeos Sports Kitchen Assembonal Focus on hands S Video RGB-D  Gaze i\lt—l::) SDsc!n/ Touch Narration Bounding Pixellevel  Labels Timestam) Oth comprehenSive Compa rison Of EgOGPT againSt State_Of_the_
— art commercial and open-source models on existing

notatior

2009 2011 2011 2011 2012 2012 2012 2011 2013 2013 2014 2014 . . .
Handled Objects CMU-MMAC EgoAction VNIST ADL Social Interactions UT Ego GETA GAZE .VPLI teraction EDSH BEOID HUJI-EgoSeg .
egocentric benchmarks. With EgolT and EgolLife Day 1 data,
10 videos / 2 hours 215 videos. 8 videos /0.5 hour 31 videos / 1 hour 20 videos / 10 hours 113 videos / 42 hours 10 videos / 37 hours 17 videos / 1 hour 57 videos / 1 hour 3 videos / 2 hours. 58 videos / 1.5 hours 122 videos / 65 hours.
EgoGPT achieve impressive performance on ego setting.
2018 2018 2018, 2017, 2017 2017, 2017 2017 @ l’ @I’ 2015 2015
W 35hons 1520 u',;o'n v ATovion LShons  130wie Shous Sk itrs  LSwiew SLhous 4wk foSow 208 e Orars 40 pasrmars 125y b 591 s 45 vies 5 rous Model #Param #Frames | EgoSchema EgoPlan EgoThink
8% 8 %
- g -
o DD © D G4y 193] 2| ke w0 6
EFET\(‘AZE DR(eye)VE \Cor YouzMe LEMMA 0 Gﬂmlnl'l .S-PI'O [9{'}] = 32 ?2.2 31,3 62.4
Qvldecslaﬁhnuvs 86 videos / 29 hour 74 videos /Sh Sk(ramesllii ueus(um 29 n /55n ours. 70v\dens/27houvs 28vmens/335h 10videos /2 hours 324 videos / 43 hours d 100 NS
“ss Boed  LEmn et B ®ll e 17 GPT-40 [97] - 32 72.2 32.8 65.5
= 20" D~ D & LLaVA-Next-Video [98] 7B 32 497 29.0 40.6
. LongVA [99] 7B 32 44.1 20 9 48.3

oo w(te |®T Ve W':ZZ Sl W(0Q IXC-2.5 [100] 7B 32 54.6 294 56.0

/@ /D= DEAD DS /@ 1>~ @ 313 InternVideo2 [101] 8B 32 55.2 27.5 439

HOI4D goBody AssemblyHands EpicSoundingObject VOST . EgoObjec o HoloA: QWCH2-VL [94] -?B 32 66.? 34‘3 59.3

EgoHOS EgoPy
4000viteos 20bours 1251 awzn 1000 videos/11243 frames 10 Vi i 3900 IRyl Kk videos /30 ho 50pais 1165 hou moou

o Wl Biroe w(ve R Oryx [57] 7B 32 56.0 33.2 53.1

2024 mzou -2023 -zozx 2023 2023) 2023, 2023 LLaVA-OV [55] B 32 60.1 30.7 54.2

SyiTe ?“.“

EgoLife oExoLearn IndustReal ENGIMA-51 VidChapters 7M LGOPALLb EgoYC2 WEAR ADT L VA v'd ] [}2 '?B 32 5? 3 33 6 56 4
AT 4SBT s St s 53V /G058 s St s T ST oS 058 Ao S rs 220Vt 324V 19 s O 200 videos /65 hours La - ¥1dcos . . .
g y A & pic
@ T Wil - TaL 38t B b= y

EgoGPT (EgolT) 7B 32 73.2 324 61.7

Overview of Classic Egocentric Dataset EgoGPT (EgolT+EgoLifeDl) 7B 32 54 334 ol4
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EgoButler — The EQOGPT Component

Whisper as audio encoder, SET on EgolT
_ ¢ e SFT an audio projector on _ . . )
LLaVA-OneVision Qwen2 with ASR datasets LLaVA OneV|S|or) and EgoLlfe E OG PT
(Qwen2 as LLM) that supports audio 9
Dataset Composition of EgolT-99K. We curated 9 classic Performance of EgoGPT-7B. The table presents a
egocentric video datasets and utilized their annotations to comprehensive comparison of EQoGPT against state-of-the-
generate captioning and QA instruction-tuning data for art commercial and open-source models on existing
fine-tuning EgoGPT, #AV indicates the number of videos egocentric benchmarks. With EgolT and EgolLife Day 1 data,
with audio used for training. EgoGPT achieve impressive performance on ego setting.
Dataset Duration  #Videos (#AV) #QA Model #Param #Frames | EgoSchema EgoPlan EgoThink
EgodD [5] 3.34h 523 (458) 141K G4y (951 ol - 2 66 B 683
Charades-Ego [25] 5.04h 591 (228) 18.46K GPTAO[O7) j o 55 08 ess
HoloAssist [29] 9.17h 121 33.96K T LaVA- Next Vidoo [98] B ” 07 290 106
- aVA-Next-Video [© . . .
EGTEA Gaze+ [20] 3.01h 16 11.20K LongVA [99] 7B 32 44.1 29.9 483
IndustReal [2E] 2.96h 44 11.58K IXC-2.5 [100] 7B 32 54.6 29.4 56.0
. ) InternVideo2 [101] 8B 32 55.2 27.5 43.9
EgoTaskQA Eg | 8.72h 172 3.59K Qwen2-VL [94] 7B 32 66.7 343 59.3
EgoProcel [27] 3.11h 18 590K Oryx [57] 7B 32 56.0 33.2 53.1
Epic-Kitchens [4] 4.15h 36 10.15K LLaVA-OV [55] 7B 32 60.1 30.7 54.2
EgoGPT (EgolT) 7B 32 73.2 32.4 61.7
Total 43.16h 1529 (686) 99.48K EgoGPT (EgolT+EgoLifeD1) 7B 32 75.4 33.4 61.4




EgoButler — The EQORAG Component

Boosted by EgoGPT, EgoButler achieves SOTA:

» In-depth egocentric video familiarity

= Omni-modal comprehension — effectively integrating
both visual and audio signals

Powered by EgoRAG, EgoGPT enables:

= Week-long memory retrieval, answering complex,
long-horizon questions

» Robust grounding and context-aware reasoning, where
others often fail

Limitations

= | One-Time Retrieval — Agentic Search

= @ Better Person Identification Modeling

- Pattern Tracker: Building a habit and behavior
pattern engine for continuous insight generation
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DAY 2 11:23AM

P00 O0HOOOVVLOVLOLE

Gemini-1.5-pro EgoGPT
| am sitting at a table covered with a pink and white checkered tablecloth with three other people. We [...] The table was covered with a checkered tablecloth, filled with various foods and drinks, and
have finished our meal, which consisted of food in a large pot. [...] My bowl has a yellowish chunk there were a few bouquets of flowers adding a touch of warmth to the scene. | adjusted my
that I'm breaking into smaller pieces with my chopsticks. [...] | listen to the others talking. One glasses and picked up the chopsticks on the table. [...] Then, | placed the chopsticks on the table,
says something about \"remembering\", another replies “um,” and then the first person says, “After picked up a spoon, and started stirring the bread in the bowl. As | stirred, [...] | smiled, "One
connecting, memory accelerates. One second to learn a dance.” | dip my chopsticks into my dish minute memory training." Lucia%laughed and said, "Hahaha, memory training." | continued to stir
and eat, then | pick up my glass for a sip as the first speaker says, “Try it.” | drink more milk, the the food in the bowl, then picked up a glass of milk from the table and took a sip. | asked, "Whose is
woman to my right puts a piece of food onto my dish, and | ask her, “Is it salty?” [...] this?" Tasha replied, "This one is really delicious." | chuckled and said, "Hahaha, whose is it?"
EgoRAG (Gemini-1.5-pro) Question DAY 615:438 EgoRAG (EgoGPT)

[...] I walk and see two ’ What was the first food [...] I moved the straw slighty DAY 2 13:51
e women, one examining refrigerated items and the | ate along with milk? ‘ with my left hand, placed a finger on the drink, and
other using a smartphone near a dairy section. fell into thought. The table was filled with [...]
A.Banana B.Pancake *
I'm holding chopsticks and C. Eggs D. Cookie [...] picked up a spoon, and DAY 111:26

‘ picking up a piece of food from a small, white bowl @ started stirring the bread in the bowl [...] then

of rice, placing it onto [....] the rice bowl. Correct Ans: B picked up a glass of milk from the table [...]

| enter a room where several [...] Katrina asked, "Where DAY 119:11
G people are standing around a long table with food. ° should | put this?" then said, "I'll do it." Tasha

| speak a sentence, but my voice isn't in English.... A.Banana B. Pancake reminded, "There's still a bottle of fresh milk [...]

<

Table 5. Performance comparison of EgoGPT with state-of-the-art models on EgoLifeQA benchmarks. For a fair comparison on
EgoLifeQA, EgoGPT was replaced with the corresponding models in the EgoButler pipeline to evaluate their performance under the same
conditions. Models that provide captions for EgoLifeQA use 1 FPS for video sampling.

. . EgoLifeQA
Model #Frames  Audio  Identity EntityLog EventRecall Habitlnsight RelationMap TaskMaster Average
Gemini-1.5-Pro [95] - v X 36.0 37.3 45.9 30.4 34.9 36.9
GPT-4o [96] 1 FPS X X 34.4 42.1 29.5 30.4 44.4 36.2
LLaVA-OV [55] 1 FPS X X 36.8 349 311 224 28.6 308
EgoGPT (EgolT-99K) 1 FPS v X 352 36.5 279 29.6 36.5 331
EgoGPT (EgolT-99K+D1) 1 FPS v v 392 36.5 311 33.6 39.7 36.0
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,egolife,
) Extremely Long.
Interpersonal, Multi-view, Multi-modal,

Daily Life

DAY 1 DAY 2 DAY 3 DAY 4 DAY 5 DAY 6 DAY 7

B 0066 IS GE6 0 E CETY Fecw HRO More to explore:

~50 HOURS €GO VIDEO PER PERSON

X 6 PERSON ]
A 4 egolife
0 ' S N ! a ‘o M’és’DN a 21:17:34.050  21:17:35.200 21:17:35.950  21:17:36.300 ° °
Z e <X 7 6 people living in the same avideo L De nse Ca ptlon, I I qnsc‘ Ipl,

— house for T days for an ¢ :n”:“"-
5 3 . .
= . . P 7‘..:‘ L \ k Earth Day Cgl‘bfatlon @ % e e e ‘\ |[|\\"||l||‘||l||||b||llh|fHw"l il G a z e B M u I tl p I e T h I r d - P e r s o n
L | ' . \ y ) ? | VTR, imu M—‘W“W"
Ratrina LISTENINC 3 = ]’,- ;‘3 l ' u z @ “Oh Shure, you play so well!” Vi ew’ S LAM

transcript
[AB

p, | turn around to leave toilet and
Ry see Shure playing guitar.
narration
After washing my hands, | turn to leave
E the restroom. | notice Shure playing
visualaudio the guitar. | am impressed by his skill.
\ caption  So, | say, “Oh, Shure, you play so well!”

TASK BOARD

.

egolife-ai.github.io

7V : e ‘ y 'l _ . - s\)
é , 75 L ‘ Entitylog  EventRecall Habitlnsight RelatlnnMap TaskMaster
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Be Dynamic Be Social
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Dynamic Scenes

H
Multimodal Generative Models
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Thank You

Ziwei Liu | ¥4

Nanyang Technological University




	Slide 1: From Multimodal Generative Models to Dynamic World Modeling
	Slide 2
	Slide 3
	Slide 4: Be Physical: 3DTopia-XL
	Slide 5: Challenges
	Slide 6: 3DTopia-XL: A Native 3D Diffusion Model for PBR Asset
	Slide 7: Key Idea: Primitive Diffusion
	Slide 8: Stage I: Geometry, Texture, Materials into N×D Primitives
	Slide 9: Stage II: Latent Primitive Diffusion
	Slide 10: Gallery: Denoising in 5 Seconds
	Slide 11: Gallery: Ready for Graphics Engines
	Slide 12: Be Physical: Neural LightRig
	Slide 13: A Long-Standing Challenge – Inverse Rendering
	Slide 14: Insights
	Slide 15: Methodology
	Slide 16: Quantitative Evaluations
	Slide 17: Surface Normal Estimation
	Slide 18: PBR Material Estimation
	Slide 19: Single-Image Relighting
	Slide 20: Single-Image Relighting
	Slide 21
	Slide 22: Be Dynamic: DynamicCity
	Slide 23: Challenges
	Slide 24: DynamicCity: 4D Occupancy Generation
	Slide 25: Unconditional 4D Generation
	Slide 26: Conditional 4D Generation
	Slide 27: Be Dynamic: CityDreamer4D
	Slide 28: Challenges
	Slide 29: Learning 4D City from 3D Data Annotations 
	Slide 30: The CityTopia Dataset
	Slide 31: CityDreamer4D Framework
	Slide 32: Comparison to SOTA Methods
	Slide 33: Arbitrary View Rendering
	Slide 34
	Slide 35: Be Social: SOLAMI
	Slide 36: 3D Characters with Social Intelligence
	Slide 37: Motivation: Avatar as Virtual Robot
	Slide 38: Training Recipe
	Slide 39: Data Generation
	Slide 40: Evaluation: Quantitative & Qualitative
	Slide 41: Demo: VR Interface
	Slide 42: Be Social: EgoLife
	Slide 43
	Slide 44: The EgoLife Collected Data
	Slide 45: The EgoLife Timeline
	Slide 46: The EgoLifeQA Benchmark
	Slide 47: The EgoLifeQA Benchmark
	Slide 48: EgoButler
	Slide 49: EgoButler – The EgoGPT Component
	Slide 50: EgoButler – The EgoGPT Component
	Slide 51: EgoButler – The EgoRAG Component
	Slide 52
	Slide 53
	Slide 54

