Formulating Structure for Vision Problems

Ziwel Liu

Department of Information Engineering
The Chinese University of Hong Kong



Appetizer

* A mathematician 1s a person who can find analogies between theorems.
* A better mathematician is one who can see analogies between proofs.
* And the best mathematician can notice analogies between theories.

* One can 1imagine that the ultimate mathematician 1s one who can see
analogies between analogies.



Outline

* Input Structure: patch, image, video, multi-modality ...

* Model Structure: information flow + regularization

 Target Structure: label, sequence, mask, multi-task ...



Content

Lessons Learned (Geometry + Semantics)
Random Thoughts (Inverse Thinking)

No Equations (Fast Forward)



Input Structure

* Case Study low-level vision tasks

Saturating
Performance




Input Structure

* Case Study I low-level vision tasks

noisy burst images a clean 1mage



Input Structure
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Input Structure

* Case Study I low-level vision tasks

Data Alignment II:
Semantics



Input Structure

* Case Study I low-level vision tasks

Original Photo #1 Original Photo #2

High Dynamic Range

Auto Smiling



Input Structure

* Case Study I low-level vision tasks
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Input Structure

* Case Study I low-level vision tasks

original optical flow

Mathieu et al. ours
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Input Structure

* Case Study II
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high-level vision tasks

Data improvement?
Model improvement?

X Zhu et al. Do We Need
More Training Data? I[JCV
2015

We need both

More data



Input Structure

* Case Study II

high-level vision tasks
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Input Structure

* Case Study II high-level vision tasks

Family of distributions of the form:

Most of the f(X) —d xk

words are rare

* Frequency of tag words Power laws
« Content popularity

Limited vocabulary
appears extremely

Long tail )
large number of times

frequency



Input Structure

* Case Study II high-level vision tasks
* User-generated content does not contain
clean data

— Non-visual texts / tags .
Learning from

— Tags tend to have high precision, low recall .
online content

— Frequency issue

* Hopetully, large data-size resolves issues



Input Structure

e Case S
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Geometry
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Input Structure

* Case Study II high-level vision tasks
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Input Structure

* Case Study II high-level vision tasks

Has-button
Similar Style Retrieval AT
Street-to-shop Fashion Assistant

Cloth Spotting in Video



Model Structure

* Case Study facial attributes prediction

Sun glasses
_ _uls

20 yearsold —

Red lips.-




Model Structure

* Case Study I facial attributes prediction
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(d) Extracting features to predict attributes




Model Structure

Attention to
salient regions




Model Structure

* Model Alignment I geometry

feature maps
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Model Structure

* Model Alignment I geometry

Transform features
to canonical position

! b,' l,/

(a)

. Ti(G)  Te(G)
' U v
(b)



Model Structure

* Model Alignment 11 semantics

High Resp. =P Low Resp. High Resp. @ Low Resp.
Gender Hair Color

Abstract useful
concepts




Model Structure

* Model Alignment 11 semantics

Test Image Activations Neurons
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Model Structure

* Model Alignment 11 semantics
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Inverse Thinking
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Model Structure

* Model Alignment 11
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Target Structure

* Dependencies Among Target

Jigsaw Puzzles




Target Structure

* Message Passing

VGG ConvNet

(2) Structured feature learning (3) Prediction
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Target Structure

* Target Alignment I geometry
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Target Structure

* Target Alignment 11 semantics
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Target Structure

* Case Study I semantic segmentation
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Target Structure

* Case Study I semantic segmentation
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Target Structure

* Case Study I semantic segmentation
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(d) +Triple Penalty (e) +Label Contexts (f) +Joint Tuning



Target Structure

Original Image Ground Truth Unary Term

Triple Penalty Label Contexts Joint Tuning



Target Structure
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Target Structure
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Target Structure

* Case Study II best pose for a selfie
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Target Structure

* Case Study II best pose for a selfie




Reference

* Windows BLINK App

With Blink for Windows Phone 8, you'll never miss the best shot or the action. Blink captures a burst of
images before you even press the shutter, and continues to capture pictures after you've taken your shot.
Save and share the shot you like best. And better yet, save a short animated Blink and share it to Facebook,
Twitter, or Blink.so.cl.

With Blink, a few simple finger swipes lets you find the perfect shot, and create a short animated Blink to
share with your friends or the world.

Never miss a shot again. Blink captures a burst of
pictures so you can choose the best one.

Blink also creates amazing sequence animations that
you can edit and share.

()
Download for free: u Windows Phone Store

Cancel

< Back

Natural




Reference

* SenseTime Fashion Eye

Fashion eye

( Please enter a picture link and press enter ( M Y Submit
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Reference

e More Details

Burst images Denoising

Semantic Image Segmentation via Deep Parsing Network

Ziwei Liu®, Xiaoxiao Li*, Ping Luo, Chen Change Loy, Xiaoou Tang.
International Conference on Computer Vision (ICCV), 2015 (Oral)

PDF  Project Page

Deep Learning Face Attributes in the Wild

Ziwei Liu, Ping Luo, Xiaogang Wang, Xiaoou Tang.
International Conference on Computer Vision (ICCV), 2015

PDF  Project Page Dataset
Fast Burst Images Denoising
Ziwei Liu, Lu Yuan, Xiaoou Tang, Matt Uyttendaele, Jian Sun.

ACM Transactions on Graphics (SIGGRAPH Asia), 2014

PDF  Project Page Product Transfer 10S App



Q&A



