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reverse process / denoising process

gradually denoise to image

Noise

>
gradually adds Gaussian noise to the data

forward process / diffusion process

Image Credit: CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations and Applications
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Skip connection

Skip features (h)

backbone features
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FreeU: Free Lunch in Diffusion U-Net &5 e STLAB

e Backbone: primarily contributes to denoising
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variations of b
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e Backbone: primarily contributes to denoising

 Skip: introduce high-frequency features into the decoder module

—— backbone
— skip
—— fusion
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Frequency

b=1.0, s=0.6 b=1.0, s=0.8 b=1.0, s=1.0 b=1.0, s=1.2 b=1.0, s=1.4 Fourier relative log amplitudes Of
backbone, skip, and their fused feature map
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(a) UNet Architecture
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Skip connection

Skip features (h)

backbone features b
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(b) FreeU Operations




Visual Results: Text-to-Image &% Didimen | STLAB,

SINGAPORE INTELLIGEMNCE

SD SD + FreeU SD 7 SD + FreeU SD SD + FreeU

o I i

)
n’a’ing a motorcycle.

A panda standing on a surfboard in the ocean
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Bridging initialization gap in video diffusion models

-

Baseline Baseline + Freelnit

* Atraining-free method for enhancing temporal consistency

e Support arbitrary video diffusion models
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Frame2 g Frame 2 gy Frame 2

Remove 20% Remove 40% Remove 60% Remove 80% Remove 100%

High Frequency Removal

Observation 1: Low-frequency in Initial Noise Matters!

Spatio-temporal low-frequency components of the initial noise dominate the overall distribution.
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Observation 2: Information Leakage at Training:

The diffusion process cannot fully corrupt low-frequency information, leaking correlations to initial noise
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Initial noise at Training: High SNR at low-frequency band, Initial noise at Inference: i.i.d Gaussian Noise, no
information leaked temporal correlations

This causes an implicit training-inference gap:

* At training, the initial noise contain temporal correlations at low-frequency band

* While at inference, the initial noise is pure Gaussian White Noise, lacking temporal correlations
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We propose a training-free approach — Freelnit, to bridge this gap:

* The initial noise at inference is iteratively refined towards the training distribution, gradually
enhancing the generation quality
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Visual Results 9 nimen | STLAD,

AnimateDiff AnimateDiff + Freelnit ModelScope ModelScope + Freelnit VideoCrafter VideoCrafter + Freelnit

A pamda stamdmg on a surfboard in the ocean in Splash of turquo:se water in extreme slow motion,
sunset. alpha channel included.

Vampire makeup face of beautiful girl, red contact An oil painting of a couple in formal evening wear going Snow rocky mountains peaks canyon. snow blanketed rocky
lenses. home get caught in a heavy downpour with umbrellas mountains surround and shadow deep canyons. The canyons twist
and bend through the high elevated mountain pea

Freelnit can be readily applied to various text-to-video models, effectively improving temporal
consistency and visual appearance
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Visual Results




FreeNoise 197 Biiieen | SLAB,

SINGAPORE INTELLIGENCE

Tuning-Free Longer Video Diffusion via Noise Rescheduling
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Direct 16 Frames Direct 64 Frames

* Directly generating longer videos

leads to poor quality

“A ckihuaku;l in astronaut Suit floa’cing

Training-inference Gap: The model is
in sloolce cmemol'hc lighting, glow effec‘t

trained on 16 frames, but is required

to generate 64 frames.

A

“A video of milk pouring over strawberries,
blueberries, and blackberries. "




Method Overview

* Core Designs:

* Local Window Fusion (for quality)
* Noise Rescheduling (for consistency)

* Motion Injection (for multi-prompt)

Noise Rescheduling Iterative Denoising

Denoising U-Net
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Multi-prompt based motion injection paradigm
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Sliding window based attention fusion
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Only apply to temporal attention, negligible additional costs
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w Teonv p=wi'o-Tconv

(c) Inference with €, (d) Sliding window inference with [€4, €;]

Observations:

* New random noises bring a significantly different video.

(3)3134nyYs yum aouaidul (q)

* Temporal attention module is order-independent.

3 sawelyE

* Temporal convolution module is order-dependent.

Solution:

* Rescheduling Noise bans the influence of temporal attention but preserves the influence of temporal

convolution, introducing new content while maintaining the main subjects and scenes.
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Motion Injection 9 USRS | e

Attngross @,z #(P)lg(P)), ifTa<t<Tsorl>L,
Attneross (@, [z (P1), 5 (P1)), otherwise

“An astronaut resting on a horse” =2 “.. riding ..”
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Direct Inference Ours

“A ckllwolkua in o\s’cronau’c suit floating in sloo\ce cinematic llgh’cmg glow effec’c
. : ~ T 3., o

“"A very happy fuzzy panda o(resseo( ds d ckef eating pizza in the New York street food truck”
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Vchitect: A Large-scale Video Generation System & @i~ S8
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* Storytelling, multiple-shots, minute-level 4K video generation

* Achieves smooth transitions, cohesive storytelling, high-definition quality, leading across various metrics

[:] SA-S: Spatial Self-Attention D CA-S: Spatial Cross-Attention D SA-T: Temporal Self-Attention [: FF: Feed-forward

, | fra]lne 1 frarlne 2 fmlme T image 1 imilge 2 image M
(sas ] (sas ] [Csas ) | SA-S ] SA-S ) SA-S ) | SA-S J
(Ccas ) (Ceas) | (cas ) (cas ] " [(cAs ) [cas ) [cas )
[ | SAI-T | ( , ISA-T ] )

v [ FF FE ) CFF ) [ ) CFF )

(@ ¥ ¥ ¥ v ¥ ¥
(b) (©)
Architecture

Transition Prediction

Transition

Long Video Generation Image to Video — Transition & Animation



Vchitect: A Large-scale Video Generation System

Temporal
Flickering
Subject Overall
Consistency Consistency
Background E Temporal
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\\
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Frame-Wise j N‘
Aesthetic Quality Scens
\ /

Frame-Wise / Spatial
Technical Quality / Relationship
%%‘:gt Color
Multiple Human
Objects Action

- Vchitect ModelScope

VideoCrafter . CogVideo

Comparison with Open-sourced Models

Vchitect

Vchitect

Lumiere

Lumiere

Comparison with Close-sourced Models
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ation, A fantasy landscape, trending on artstation, 4k,
high resolution.

A space shuttle launching into orbit, with flames
and smoke billowing out from the engine.

Prediction

LaVie [Wang, Chen, Ma et al., arXiv'23] SEINE [Chen, Wang et al., arXiv'23] LATTE [Ma, Wang et al., arXiv’'24]
Text-to-video generation Image-to-video generation Latent Diffusion Transformer
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High-quality Video Generation with Cascaded Latent Diffusion Models

-—

t trending on artstation, A fantasy landscape, trending on artstation, 4k,

oil painting. high resolution.

A super cool giant robot in Cyberpunk city, A Mars rover moving on Mars. A space shuttle launching into orbit, with flames
artstation. and smoke billowing out from the engine.

S-LAB
FOR ADWANCED
INTELLIGENCE




LaVie — Model Design % il SR8,

16x320%512 61x320%512 61x1280%2048
V-LDM V-LDM V-LDM
Zr —> — —
T 7| (Base) D E (TD) D E (VSR) D
CLIP Text Encoder

I

“Cinematic shot of Van Gogh's selfie, Van Gogh style”

A cascaded video generation system:

* Base model =2 320x512 resolution, 16 frames

* Interpolation model = 320x512, 61 frames

* Super-resolution model = 1280x2048, 61frames
* CLIP Text Encoder
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[:] SA-S: Spatial Self-Attention [:] CA-S: Spatial Cross-Attention (] SA-T: Temporal Self-Attention [} FF: Feed-forward

: : : frarlne 1 fraline 2 fralme T imzlage 1 imzlage 2 imiage M
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TI,F [ sAT | i . SA-T ]
@ [ e ) i [ T J | T ] T ) | i J i ] iz ]
(b) | (c)

Pre-trained Stable Diffusion:
e 2D UNet = 3D UNet

* |nvolving temporal self-attention + relative positional encoding




LaVie — Learning % iibigeon | STLAB.

- SINGAPORE INTELLIGEMNCE

[:] SA-S: Spatial Self-Attention [:] CA-S: Spatial Cross-Attention (] SA-T: Temporal Self-Attention [} FF: Feed-forward

: : : frarlne 1 fraline 2 fralme T imzlage 1 imzlage 2 imiage M
[ SA-S ] | SA-S ] : ( 5A-S ) SP;—S ) ( sxs;-s ] | SP;—S ] | SP;—S ) [ SP;—S )
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* Pre-trained Stable Diffusion * Learning objective (image-video joint training):
1. Fast convergence L=E [Ile —€g(E(Ve), ¢, 6v)||§] +axE [lle —€g(E(x), 1, cf)lli]

* Joint image-video fine-tuning
1. Prevent catastrophic forgetting

2. More creativity, diversity and better visual quality
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Videos from Vimdeo25M dataset

1. LAION-5B dataset (large-scale image dataset)
2. WebVid10M (large-scale text-video dataset, ~320 x 500, with watermark)
3. Vimeo25M (large-scale text-video dataset)

* More detailed captions (provided by VideoChat)

* Higher resolution, 1080p, better visual quality

e Better aesthetics
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Two teddy bears playing poker a teddy bears skateboarding under water a teddy bears reading a book in the
under water park, oil painting style

— - N

Elon Musk standing besides a rocket

a cat reading a book, Van Gogh style

Iron Man flying in the sky
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Short-to-Long Video Diffusion Model for Generative Transition and Prediction

Transition Transition Prediction




SEINE — Architecture & Learning 4 e STLAB.
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Training Inference:
1. LaVie pretrained Different masks =
2. Image-conditioned generation Transition, Animation, Prediction

3. Random masks as extra input conditions
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Story-based Long Video Generation (LaVie + SEINE) & i S:t28,
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Latte: Latent Diffusion Transformer

A diffusion transformer for general video generation

Noise

%

Variance

T

Linear and Reshape

¢

Layer Norm

i

T

Transformer Blocks

0

Embed to Tokens

Video Frame Sequences |

!
Temporal

T
Spatial
T
Temporal
T
Spatial
T
Temporal

z: 4

Spatial
?

Zg |
Embedding

Latte architecture
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We introduce:
1. Model architecture designs
2. Transformer designs

3. Best practices in model and training

S-LAB
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Latte — Model design
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Variant 1:
(Spatial + Temporal) x N blocks

Variant 1 Variant 2
] i
Temporal Temporal
t t
Spatial Temporal
t t
Temporal Temporal
; 2
Spatial Spatial
t t
Temporal Spatial

2 r
Spatial Spatial
4 4

Zg | Zs |
Embedding Embedding
(a) (b)

Our choice

Variant 2:
(Spatial x N/2 blocks) + (Temporal x N/2 blocks)

S-LAB
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Latte — Transformer block design

A
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MHA
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Layer Norm
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MLP
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Layer Norm
A
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MHA

T

Layer Norm
A

1. Separate spatial & temporal transformer blocks
e Spatial block
 Temporal block

Embedding

(1)

MLP
4 MLP
Layer Norm t
Zg “4 Layer Norm
A
MHA s e
4 Fusion
Layer Norm t 1
Ze e MHA MHA
MHA |
4 Layer Norm
Layer Norm i
A
Zs
Embedding Embedding
(2) (3)

Our choice

2. Joint spatio-temporal transformer block
e Cascaded spatial and temporal attentions

3. Joint spatio-temporal transformer block
* Parallel spatial and temporal attentions
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We systematically analyze:
(a) Video sampling interval (rate 2, 3, 4, 8, 16)

A
(b) Temporal positional embedding (absolute or relative) .2 e
(c) ImageNet pretraining is NOT NECESSARY D SCfale
(d) Video clip patch embedding (uniform or compression) e
(f) Timestep-class information injection (S-AdaLN or all-tokens) V2, B2 ]
— Scale, Shift
T
Layer Norm
al Fe
—> Scale
T
7 e ; »F MHA
s - 5 % yC’
(a) uniform frame patch embedding (b) compression frame patch embedding c Scale, Shift
Video clip patch embedding f
MLP Layer Norm
TI A
Timestep- Embedding

class

Timestep-class information injection
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Method IS 1 FID | Method FaceForensics SkyTimelapse UCF101 Taichi-HD
MoCoGAN 009 3397 MoCoGAN 124.7 206.6 2886.9 _
. VideoGPT 185.9 222.7 2880.6 _
VideoGPT 12.61  22.7 MoCoGAN-HD 111.8 164.1 1729.6 128.1
MoCoGAN-HD 23.39 7.12 DIGAN 62.5 83.11 1630.2 156.7
DIGAN 23.16 19.1 StyleGAN-V 47.41 79.52 1431.0 -
StyleGAN-V 29394 9445 PVDM 355.92 75.48 1141.9 540.2
Latte (ours) 68.53 0.02 Latte (ours) 34.00 59.82 47797 159.60
Latte+IMG (ours) 73.31  3.87 Latte-+IMG (ours) 27.08 42.67 333.61  97.09
Frame-level quality Video-level quality

comparison comparison
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A dog in astronaut suit and sunglasses floating in space.

Yellow and black tropical fish dart through the sea. a cat wearing sunglasses and working as a lifequard at pool|
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VEnhancer cenerative Space-Time Enhancement for Video Generation EEEWS&S&?&'“L S L,
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Clown fish swimming through the coral reef.
Ny, -

AIGCvideo w. ‘ﬁ

-*VEnhancer _\\-"J. e
’ oS

e A Unified model for generative spatial super-resolution (S-SR), temporal
super-resolution (T-SR), and video refinement.

e Support arbitrary upsampling factors for S-SR and T-SR, as well as flexible
control to modify refinement strength.




VEnhancer — Architecture
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Condition network: Video ControlNet (orange part), finetuned.
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VEnhancer — Results 9% Uiieen | SLAB,
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Iron Man flying in the sky.

+RealBasicVSR |8 | +Lavie-SR +VEnhancer

VEnhancer outperforms state-of-the-art video super-resolution methods and space-time super-resolution
methods in enhancing Al-generated videos.




VEnhancer — Results &5 iy SLAB.
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Dimensions Show-1[46] LaVie [40] Open-Sora Pika Gen-2 VC-2]9] VC-2+VEnhancer
Subject Consistency 95.53% 91.41% 92.09% 96.76% 97.61% 96.85% 97.17%
Background Consistency 98.02% 97.47% 97.39% 98.95% 97.61%  98.22% 98.54%
Temporal Flickering 99.12% 98.30% 98.41% 99.77% 99.56%  98.41% 98.46%
Quality Motion Smoothness 98.24% 96.38% 95.61% 99.51% 99.58% 97.73% 97.75%
Aesthetic Quality 57.35% 54.94% 57.76% 63.15% 66.96% 63.13% 65.89%
Dynamic Degree 44.44% 49.72% 48.61% 37.22% 18.89%  42.50% 42.50%
Imaging Quality 58.66% 61.90% 61.51% 62.33% 67.42% 67.22% 70.45%
Object Class 93.07% 91.82% 74.98% 87.45% 90.92%  92.55% 93.39%
Multiple Objects 45.47% 33.32% 33.64% 46.69% 55.47%  40.66% 49.83%
Human Action 95.60% 96.80% 85.00% 88.00% 89.20%  95.00% 95.00%
Color 86.35% 86.39% 78.15% 85.31% 89.49% 92.92% 94.41%
Semantic Spatial Relationship 53.50% 34.09% 43.95% 65.65% 6691% 35.86% 64.88%
Scene 47.03% 52.69% 37.33% 44.80% 4891% 55.29% 51.82%
Appearance Style 23.06% 23.56% 21.58% 21.89% 19.34%  25.13% 24.32%
Temporal Style 25.28% 25.93% 25.46% 2444% 24.12%  25.84% 25.17%
Overall Consistency 27.46% 26.41% 26.18% 2547% 26.17%  28.23% 27.57%
Overall Quality 80.42% 78.78% 78.82% 82.68% 82.46%  82.20% 83.28%
Semantic 72.98% 70.31% 64.28% 71.26% 73.03% 73.42% 76.73%

With VEnhancer, VideoCrafter-2 [1] achieves the top one in VBench in both semantic and quality, outperforming
professional video generation products, Gen-2 and Pika.




An astronaut is riding a horse in the space in a photorealistic style.

o . |
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Diffusion-based Video Generation with Image Prompts

<Dog> eating snack inside big iron cage at home.

—

b

3

2 A dog

e

g * Merely using text prompts is not enough to
customize video generation

= A dog with a ' . )

L | brown and white * Itis hard to enumerate all desired attributes

bp| coat and a o . '

& | distinctive collie * The model is incapable of capturing all attributes

appearance
accurately from texts

4

image prompt










Dog swimming in lake
happily

Dog in park Portrait of a dog, looks
out the car window



VideoBooth - Method 9% Wiiifmen  SLAB,

A dlog celebrates birthday with
glifts, balloons and soap bubbles stock footage video
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dog laying on ground

T

VideoBooth (Ours)
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Image Prompt
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close up of cat on top of a
vintage chair

S-LAB
FOR ADVANCED
INTELLIGENCE




VideoBooth - Results B e | SLAB,

INTELLIGENCE

s

Image Prompt

DreamBooth

Text Prompt

car in the bush

ELITE VideoBooth (Ours)
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Evaluation
Method Suite

for each dimension:

Prompt Suite

separate prompts for:

© e Rl ElnEnsIen _—:- ¢ designated model and pipeline
* each content category g PP

': Alignment
! Generated Videos Verification

D [ % ........._f o - &N *‘/
| DDQ """ Human Preference

video generation i .
models sampled videos An nOtatlon
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Dimension Suite -

Evaluation Dimension Suite * 16 ability dimensions, hierarchical

« comprehensive, hierarchical, fine-grained, objective d nd dise nta ngled
* revealing individual models' strengths and weaknesses . .
* Each dimension assesses one

e T aspect of video generation quality
ez vty * Why Multiple Dimensions?
e * Reveal individual model’s strengths

BRI o and weaknesses

Multiple Objects e

—————————

Qua“ty Semantics Human Action - . Different peOpIe prioritize eaCh

Color

S — ability dimension differently

Scene

Video Generation

Video-Condition Overall Consistency
Consistency

Temporal Style
Style

Appearance Style
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Evaluation Dimension: Motion Smoothness

score 96.04% (better) score 88.47%

Temporal Quality

Motion Smoothness

Video Quality

Video Generation
Quality

whether the motion in the generated
video is smooth
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Evaluation Results

Video Generative Models

Subject
Consistency
Background Overall
Consistency Consistency

Flickering Z e _ _
votion / — * Trade-off across dimensions:
N < e * e.g., temporal consistency vs.
A dynamic degree

Dynamic a\
Degree < Scene

Aesthetic
Quality

Spatial
Relationship

Imaging

Quality Color

Object Human
Class Action
Multiple
Objects

LaVie ModelScope ‘CogVideo ‘VideoCrafter—0.9 VideoCrafter-1.0
VideoCrafter-2.0 @ LaVie-Interpolation @ Show-1 @ Open-Sora @ Gen-2 @ Pika
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Evaluation Results e s

Video vs. Image Generative Models

Aesthetic
Quality

Imaging Overall
Quality Consistency

e Gap with T2l in compositionality

Object Appearance * e.g., muItipIe objects,
Class Style . ]
e e.g., spatial relations
Multiple
Objects Scene
Human Spatial
Action Relationship

Color

LaVie { ) ModelScope ‘ VideoCrafter . CogVideo SD1.4 SD2.1 SDXL
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Evaluation Results

Content Categories

Subject Subject Subject Subject
Consistency Consistency Consistency Consistency

Overall
Consistency

Background
Consistency

Overall Background

X Overall Background Overall Background
| Consistency Consistency

./ Consistency Consistency Consistency Consistency

/]

| J
|

l

J’
e J

!
Motion J Imaging Motion . ,,/ Imaging Motion > Imaging Motion Imaging
Smoothness Quality Smoothness \ /,.// Quality Smoothness Quality Smoothness Quality
N~
Aesthetic Aesthetic Aesthetic Aesthetic
Quality Quality Quality Quality
LaVie ModelScope VideoCrafter CogVideo
Animal Architecture Food . Lifestyle . Scenery Human @ Plant Vehicles

* Uncovering hidden potential of models in specific content categories
* e.g., CogVideo has strong aesthetics in Food category.
* CogVideo’s potential in aesthetics by improving such ability in other content types.

* We recommend evaluating video generation models not just based on ability dime
but also considering specific content categories to uncover their hidden potential.
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Food:11%

Vehicles:11% Animal:14%
Plant:10% Architecture:4% - sngen  452% NANYANG
’ . ’ g o o o m TECHNOLOGICAL S-LAB
E I . 2 41.13% ﬁ
valuation Results

Lifestyle:4%

Human:26%

“Scenery:21%

Subject Subject Subject Subject
Consistency Consistency Consistency Consistency

Background S Overall Background . Overall Background Overall Background Overall
Consistency WConsistency Consistency ~ Consistency Consistency 7Consistency Consistency Consistency
/ (V<
i [
Motion ! Imaging Motion Imaging Motion Imaging Motion Imaging
Smoothness Quality Smoothness Quality Smoothness Quality Smoothness Quality

Aesthetic Aesthetic Aesthetic Aesthetic
Quality Quality Quality Quality
LaVie ModelScope VideoCrafter CogVideo

O Animal Architecture Food . Lifestyle ' Scenery . Human . Plant Vehicles

* Data quality over data quantity

* Despite constituting only 11% of the WebVid-10M dataset, the "Food" category
consistently achieves the highest aesthetic quality scores. Further analysis reveals
it maintains the highest aesthetic ratings within WebVid-10M. This underscores

the importance of enhancing data quality rather than expanding data volume.
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Human Alignment of VBench S e
.’ Per-Dimension
‘. Human Subject Background
‘. 1o Consistency o Consistency o Temporal Flickering 1o Motion Smoothness o Dynamic Degree o Aesthetic Quality o Imaging Quality o Object Class
> . 0 =0.9651 p = 0.9480 p =0.8873 o = 0.9980 o = 0.8209 p = 0.9865 p=0.9216 p = 0.8037
( Annotation e . L 4
2 4 . "
0s 0s 1 os s st 0s 0s 1 os
. , , , . , hd , ,
H P f 5 3 10 ¢ 5 10 %0 05 10 %0 o5 10 ¢ 3 10 ¢ o5 10 %0 (5 10 %0 05 10
uman rrererence $  Multiple Objects Human Action Color Spatial Relationship Scene Appearance Style Temporal Style Overall Consistency
@ 10 : 10 T 10 T 10 . 10 . 10 T 10 T 10 T
. S “[e=0.98%8 0 =0.8915 b =0.6073 p=0.9759 p = 0.9407 b = 0.9965 0 =0.9753 p=0.9327
Annotation
- e d — N
05 /( 05 / 4 os / o5 ns—// 05 / 0s / 1 os
All ‘ WL WL . / L L WL L .

o 00 L
Alignment oman

G enerated LaVie win ratio ModelScope win ratio A VideoCrafter win ratio # CogVideo win ratio ~—— Fitting

Videos Verification

MEe‘:ﬁ'O“da‘S‘ﬂ?te VBench evaluations across all dimensions closely
\‘ match human perceptions.

Per-Dimension
VBench Evaluation
—_—
Results
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ench Leaderboard

VB * 14 T2V models
, ENCH + 12 12V models
Comprehensive Benchmark Suite for Video Generative Models

PSPPI ° _l o) i n our Ie ade rb oa rd !

subject consistency background consistency temporal flickering motion smoothness dynamic degree aesthetic quality

Select Semantic Dimensions
imaging quality object class multiple objects human action color spatial relationship scene appearance style

Deselect All temporal style overall consistency
Model Name (clickable) 4 Source 4 Total Score ¥ Quality Score 4 Semantic Score 4 Selected Score 4 subject consistency 4 background consistency 4 t
T2V-Turbo (VC2) T2V-Turbo Team 81.01% 82.57% 74.76% 81.01% 96.28% 97.02% 9
Gen-2 (2023-06) VBench Team 80.58% 82.47% 73.03% 80.58% 97.61% 97.61% 9
VideoCrafter-2.0 VBench Team 80.44% 82.2% 73.42% 80.44% 96.85% 98.22% 9
Pika (2023-06) VBench Team 80.4% 82.68% 71.26% 80.4% 96.76% 98.95% 9
AnimateDiff-v2 VBench Team 80.27% 82.9% 69.75% 80.27% 95.3% 97.68% 9
VideoCrafter-1.0 VBench Team 79.72% 81.59% 72.22% 79.72% 95.1% 98.04% 9
Show-1 VBench Team 78.93% 80.42% 72.98% 78.93% 95.53% 98.02% 9
Latte-1 VBench Team 77.29% 79.72% 67.58% 77.29% 88.88% 95.4% 9
LaVie-Interpolation VBench Team 77.11% 79.06% 69.28% 77.11% 92.0% 97.33% 9
Lavie VBench Team 77.08% 78.78% 70.31% 77.08% 91.41% 97.47% 9
Open-Sora VBench Team 75.91% 78.82% 64.28% 75.91% 92.09% 97.39% 9
ModelScope VBench Team 75.75% 78.05% 66.54% 75.75% 89.87% 95.29% 9
VideoCrafter-0.9 VBench Team 73.02% 74.91% 65.46% 73.02% 86.24% 92.88% 9

CogVideo VBench Team 67.01% 72.06% 46.83% 67.01% 92.19% 96.2% 9
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Fully Open-Source

* Evaluation Method Suite (code)
* Prompt Suite (text prompts)

* Human Preference Annotations
* Generated Videos (mp4)

LaVie,ModelScope,CogVideo,Show-1,
VideoCrafter-0.9/1/2, Pika,Gen-2,
OpenSora (more to be added)

pip install vbench
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Serial Works in Progress

VBENCH-I12V VBENCH-Long

Image-to-Video (12V): multi-ratio for longer videos
and multi-scale image benchmark, (e.g., 10 sec, 20 sec, 1 min)
12V evaluation dimensions

VBENCH-Trustworthiness

non-technical aspects of video generation model:
culture, bias, safety




Thank you for listening!
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