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Robustness is Crucial in Point Cloud

• Point clouds are used in safety-critical applications but often suffer from 
severe OOD corruptions.

Corruptions are severe and OOD
e.g., occlusions, sensory noise

Clean Real-world

Applications are safety-critical 
e.g., autonomous driving



3D Sensory Data with Distribution Shifts

• Corruptions Taxonomy: We break down common corruptions into detailed 
corruption sources, and further simplify them into a combination of atomic 
corruptions.



Comprehensive Benchmarking Suite

ModelNet-C: ModelNet40 is one of the most used benchmarks. We corrupt 
the ModelNet40 testset using the atomic corruptions with varying severities.

Atomic Corruptions Different Severities



Evaluation Protocol

Evaluation Metrics: Inspired by the ImageNet-C, we use mean CE (mCE), as 
the primary metric. Compared to the commonly used Overall Accuracy (OA), 
mCE shows average performance under all types of corruptions.



Indicative of real-world robustness?

• Yes. We observe that ModelNet-C mCE strongly correlates to ScanObjectNN
(SONN) OA. In comparison, ModelNet40 OA has nearly no correlation to 
SONN OA.



Point cloud classifier getting more robust?

• No. Although the accuracy on ModelNet40 gradually saturates, the 
robustness is at the risk of getting worse, due to the lack of a standard test 
suite. 



What makes a robust point cloud classifier?

• Three main components: 1) architecture design, 2) self- supervised 
pretraining 3) augmentation methods. 



What makes a robust point cloud classifier?

• We conduct a comprehensive 
analysis and observe:
• Proper architecture designs can 

improve robustness, e.g., advanced 
grouping and self-attention.
• Pretrain signals can be transferred, 

benefiting robustness under specific 
corruptions. 
• Mixing and deformation 

augmentations can bring significant 
improvements to model robustness. 



Enhancing Robustness in Point Cloud

• For verification, we propose a new architecture and a new augmentation 
technique strictly following our empirical findings. 
• They outperform existing methods.

Our proposed architecture RPC Our proposed augmentation WolfMix



Conclusion

• The SoTA methods for point cloud classification on clean data are becoming 
less robust to random real-world corruptions.
• We highly encourage future research to focus on classification robustness 

so as to benefit real applications. 

ModelNet-C Benchmark Result



Code, Models & Dataset
Released at https://github.com/ldkong1205/PointCloud-C

https://github.com/ldkong1205/PointCloud-C
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Unsupervised Domain Adaptive 3D Detection with 
Multi-Level Consistency 



3D Object Detection

[PointRCNN CVPR2019]

[CenterPoint CVPR2021]

[PVRCNN CVPR2020]

[HVPR CVPR2021]



3D Object Detection Datasets

[KITTI Dataset] [Waymo Open Dataset] [nuScenes Dataset]



How Do Models Generalize Across Domains?

• Performance drops dramatically across domains

• Largely due to scale mismatch

Inaccurate cross-domain predictionsEvaluation performance on KITTI for models trained
on different domains [1]

[1] Wang, Yan, et al. "Train in germany, test in the usa: Making 3d object detectors generalize." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.



How Do Models Generalize Across Domains?

• Early study [1] mitigates scale mismatch based on statistical information

• Such information is not always available

Scale rectification based on statistical information [1]Object scale distributions of different datasets [1]

[1] Wang, Yan, et al. "Train in germany, test in the usa: Making 3d object detectors generalize." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.



The Mean Teacher Paradigm

• Widely used for semi-supervised learning, self-

supervised learning, domain adaptation

• Teacher model obtained from exponential

average of student model

• Trained with consistency loss between student

and teacher predictions



Multi-Level Consistency Network (MLC-Net)
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Point-Level Consistency

• Point correspondence remains after

input augmentation

• Classification consistency between each

pair of points

• Box consistency for points belonging to

the foreground



Instance-Level Consistency

• Correspondence breaks due to proposal

sampling

• Map teacher proposals to student to

establish correspondence

• Apply RoI augmentation to avoid trivial

solution

• Compute instance-level consistency losses



Neural Statistics-Level Consistency

• Significant mismatch exists in layer

statistics between source and target

domain

• Lead to suboptimal training behaviors

• Apply running statistics of student

model to teacher model during training

Neural Statistical mismatch



Experimental Results



Effectiveness of scale distribution rectification

Scale distribution comparison of models trained on KITTI and tested on Waymo



Ablation Studies

Effect of point-level and instance-level consistency losses

Effect of neural statistics-level consistency.
(Separate: batch norm performed for each
domain individually.)



Extension to other detection models

Extension to the one-stage 3DSSD detector.



Qualitative Results



Qualitative Results



Video Demo
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AV Perception

From left to right:
• LiDAR semantic segmentation
• LiDAR panoptic segmentation
• 3D object detection
• 4D LiDAR panoptic segmentation

Why LiDAR sensors?
• Accurate depth sensing
• Robust at low-light conditions
• Dense perceptions
• …



Overview

(a) Motivation. Semantic scene priors are overt for each category in LiDAR point clouds.
(b)Generalizability. LaserMix can be added into various popular LiDAR representations.
(c) Effectiveness. LaserMix helps to improve both semi- and fully-supervised settings.



Spatial Prior

Certain class tends to appear at certain areas around the ego-vehicle!



Motivation
• We target on the less-explored semi-supervised

LiDAR segmentation.

• Our goal is to leverage the abundant raw LiDAR
scans for training accurate segmentation models.

• We make advantages of the spatial prior in LiDAR
scenes for effective learning with semi supervisions.

• TL;DR - LaserMix leverages the strong spatial prior 
of driving scenes to construct low-variation areas 
via laser beam mixing, and encourages models to 
make confident and consistent predictions before 
and after mixing.



Laser Partition & Mixing
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Consistency Regularization



Consistency Regularization



Settings
High-res LiDAR:
• SemanticKITTI
• Denser scenes

Low-res LiDAR:
• nuScenes
• Sparser scenes

Weak supervision:
• ScribbleKITTI
• Sparse labels



Settings
• Range View

• Backbone: FIDNet [IROS’21]
• # Param: 6.05M
• 6 x 32 x 1920 (nuScenes)
• 6 x 64 x 2048 (SemanticKITTI/ScribbleKITTI)

• Voxel
• Backbone: Cylinder3D [CVPR’21]
• # Param: 28.13M
• [240, 180, 20]

• Data Split
• 1%, 10%, 20%, 50% (labeled)
• Random sampling
• Assume the remaining ones are unlabeled

Y. Zhao, et al. “FIDNet: LiDAR point cloud semantic segmentation with fully interpolation decoding,” IROS, 2021.
X. Zhu, et al. “Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation,” CVPR, 2021.



Comparative Studies

A. Tarvainen and H. Valpola. “Mean teachers are better role models: Weight-averaged consistency targets improve semi-
supervised deep learning results,” NeurIPS, 2017.
G. French, et al. “Semi-supervised semantic segmentation needs strong, high-dimensional perturbations,” BMVC, 2020.
Y. Zou, et al. “Domain adaptation for semantic segmentation via class-balanced self-training,” ECCV, 2018.
X. Chen, et al. “Semi-supervised semantic segmentation with cross pseudo supervision,” CVPR, 2021.



Comparative Studies

L. Jiang, et al. “Guided point contrastive learning for semi-supervised point cloud semantic segmentation,” ICCV, 2021.

SemanticKITTI

nuScenes



Comparative Studies

Cityscapes (RGB)

Y. Ouali, et al. “Semi-supervised semantic segmentation with cross-consistency training,” CVPR, 2020.
Z. Ke, et al. “Guided collaborative training for pixel-wise semi-supervised learning,” ECCV, 2020.

Also has spatial priors in scenes!



Ablation Studies

(1) Results of MeanTeacher.

(2) Results of LaserMix w/ student supervisions; much better than the counterpart.

(3) Results of LaserMix w/ teacher supervisions; much better than the counterpart.



Ablation Studies

A. Nekrasov, et al. “Mix3D: Out-of-context data augmentation for 3D scenes,” 3DV, 2021.
S. Yun, et al. “Cutmix: Regularization strategy to train strong classifiers with localizable features,” ICCV, 2019
T. DeVries and G. W. Taylor. “Improved regularization of convolutional neural networks with cutout,” arXiv, 2017
H. Zhang, et al. “Mixup: Beyond empirical risk minimization,” ICLR, 2018.

(a) Comparisons among different mixing techniques. (b) EMA. (c) Confidence threshold.



Ablation Studies
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Visual Comparison



Know More About LaserMix



Know More About LaserMix

• Paper: https://arxiv.org/abs/2207.00026

• Code: https://github.com/ldkong1205/LaserMix

• Tutorial: https://zhuanlan.zhihu.com/p/528689803

• Project Page: https://ldkong.com/LaserMix

https://arxiv.org/abs/2207.00026
https://github.com/ldkong1205/LaserMix
https://zhuanlan.zhihu.com/p/528689803
https://ldkong.com/LaserMix
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