Rethinking Generalization in Vision Models: Architectures, Modalities, and Beyond

Ziwei Liu

Nanyang Technological University

Why Need Generalization?

• In practice there is often a distribution shift between training and testing

Rethinking Generalization

Corruptions / Perturbations / Domain Shifts

Rethinking Generalization

Semantic Shift

OOD Detection

Learning

Corruptions / Perturbations / Domain Shifts

Semantic Shift

OOD Detection

Zero-shot / Few-shot / Long-tailed Learning

Neural Architectures

Corruptions / Perturbations / Domain Shifts

Semantic Shift

OOD Detection

Zero-shot / Few-shot / Long-tailed Learning

Corruptions / Perturbations / Domain Shifts

Semantic Shift

OOD Detection

Zero-shot / Few-shot / Long-tailed Learning

Corruptions / Perturbations / Domain Shifts

Convolution v.s. Attention (2D Vision)

Zhang et al., Delving Deep into the Generalization of Vision Transformers under Distribution Shifts, CVPR 2022

Related Works:

Bai et al., Are Transformers More Robust Than CNNs, NeurIPS 2021 Zhou et al., Understanding the Robustness in Vision Transformers, arXiv 2022

The Rise of Transformers

Success of Vision Transformers

2D Sensory Data with Distribution Shifts

Taxonomy of out-of-distribution shifts in 2D images

Investigation Protocol

Categorization of distribution shifts

Shift Type	background	foreground					
		pixel	texture	shape	structure		
Background Shift		\checkmark	\checkmark	\checkmark	\checkmark		
Corruption Shift			\checkmark	\checkmark	\checkmark		
Texture Shift				\checkmark	\checkmark		
Style Shift					\checkmark		

Out-of-distribution (OOD) generalization evaluation protocols

Accuracy on OOD Data

$$Acc(F,C;\mathcal{D}_{ood}) = \frac{1}{|\mathcal{D}_{ood}|} \sum_{(\mathbf{x},\mathbf{y})\in\mathcal{D}_{ood}} \mathbf{1} (C(F(\mathbf{x})) = \mathbf{y}).$$

IID/OOD Generalization Gap

 $Gap(F,C;\mathcal{D}_{iid},\mathcal{D}_{ood}) = Acc(F,C;\mathcal{D}_{iid}) - Acc(F,C;\mathcal{D}_{ood}).$

Background shift results

100

- ViTs perform with a weaker • background-bias than CNNs.
 - A larger ViT extracts a more • background-irrelevant representation.

Mixed-Next

Mixed-Same

ImageNet-9 Results

IID/OOD Generalization Gap

Corruption shift results

- ViTs deal with corruption shifts better than CNNs and generalize better along with model size scaling up.
- ViTs benefit from diverse augmentation in enhancing generalization towards vicinal impurities, but their architectural advantage cannot be overlooked.

ImageNet-C Dataset

ImageNet-C Results

Texture shift results

Stylized-ImageNet Dataset

Cue Conflict Stimuli Dataset

Stylized-ImageNet Results

Cue Conflict Stimuli Results

- ViTs' stronger bias towards shape enables them to generalize better under texture shifts and their shape biases have a positive correlation with their sizes.
- ViTs with larger patch size exhibit a stronger bias towards the shape.

Avg.Gap

36,09

35.54

39.52

26.72

Avg.Gap

37.93

36.09

43.81

31.03

100

80

100

80

Style shift results

• ViTs have diverse performance on IID/OOD generalization gap under Style shifts.

DomainNet Dataset

DomainNet Results

Structure bias investigation

Grad-CAM Heat Maps

 ViTs shows stronger bias towards object structure.

Accuracies of models trained with real on different domains

Structure bias investigation

T-SNE Visualization Results in Layer 12

Enhancing Generalization of ViTs

Generalization-Enhanced ViTs

T-ADV (based on adversarial learning)

T-MME (based on minimax entropy)

Enhancing Generalization of ViTs

Generalization-Enhanced ViTs

T-SSL (based on self-supervised learning)

Enhancing Generalization of ViTs

Studies on Generalization-Enhanced ViTs

Model	Method	R→C	R→P	P→C	C→S	S→P	R→S	P→R	Avg.
DeiT-B/16	-	54.6	48.4	40.4	45.7	36.8	41.3	55.3	46.1
	T-ADV	58.2	50.9	41.9	51.2	46.1	47.5	55.7	50.2
	T-MME	60.6	52.0	42.3	50.3	45.8	48.0	54.9	50.5
	T-SSL	56.8	49.1	46.0	51.8	47.0	46.0	61.0	51.1
DeiT-S/16	-	50.6	45.8	36.1	43.4	35.2	39.3	52.1	43.2
	T-ADV	53.6	47.8	38.0	47.1	41.6	41.9	52.8	46.1
	T-MME	56.9	49.2	39.0	46.5	43.0	42.1	52.5	47.0
	T-SSL	53.9	46.7	42.8	47.3	43.0	40.9	57.1	47.4
BiT	-	42.2	41.1	30.7	37.0	28.2	32.6	48.5	36.8
	DANN	45.2	42.9	33.0	40.4	36.6	35.3	49.3	40.4
	MME	50.2	44.6	34.8	40.3	38.4	37.8	47.6	42.0
	SSL	52.6	42.8	39.0	45.7	39.1	39.7	56.1	45.0
VGG-16	-	39.4	37.3	26.4	33.0	25.6	27.8	45.7	33.6
	DANN	43.3	40.1	28.7	36.2	31.6	35.5	44.7	37.2
	MME	42.7	42.5	27.4	36.9	33.9	32.6	45.9	37.4
	SSL	43.8	41.9	32.2	35.7	37.0	31.1	55.2	39.5

Results of Generalization-enhanced methods

T-ADV

T-MME

10000

Effectiveness of different training strategies

Code and models

Released at <u>https://github.com/Phoenix1153/Vit_OOD_generalization</u>

 \equiv README.md

Out-of-distribution Generalization Investigation on Vision Transformers

This repository contains PyTorch evaluation code for *CVPR 2022* accepted paper Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Taxonomy of Distribution Shifts

Shift Type	background	foreground					
		pixel	texture	shape	structure		
Background Shift		✓	\checkmark	\checkmark	\checkmark		
Corruption Shift			\checkmark	\checkmark	\checkmark		
Texture Shift				\checkmark	\checkmark		
Style Shift					\checkmark		

<u>Convolution</u> v.s. <u>Attention</u> (3D Vision)

Ren et al., Benchmarking and Analyzing Point Cloud Classification under Corruptions, ArXiv 2022

Related Works:

Sun et al., Benchmarking Robustness of 3D Point Cloud Recognition Against Common Corruptions, ArXiv 2022

Robustness is Crucial in Point Cloud

 Point clouds are used in safety-critical applications but often suffer from severe OOD corruptions.

Corruptions are severe and OOD e.g., occlusions, sensory noise

Applications are safety-critical e.g., autonomous driving

 Corruptions Taxonomy: We break down common corruptions into detailed corruption sources, and further simplify them into a combination of atomic corruptions.

INTELLIGENC

Comprehensive Benchmarking Suite

ModelNet-C: ModelNet40 is one of the most used benchmarks. We corrupt the ModelNet40 testset using the atomic corruptions with varying severities.

Evaluation Protocol

Evaluation Metrics: Inspired by the ImageNet-C, we use mean CE (mCE), as the primary metric. Compared to the commonly used Overall Accuracy (OA), mCE shows average performance under all types of corruptions.

$$CE_{i} = \frac{\sum_{l=1}^{5} (1 - OA_{i,l})}{\sum_{l=1}^{5} (1 - OA_{i,l}^{DGCNN})},$$

$$\text{mCE} = \frac{1}{N} \sum_{i=1}^{N} \text{CE}_i$$

Indicative of real-world robustness?

 Yes. We observe that ModelNet-C mCE strongly correlates to ScanObjectNN (SONN) OA. In comparison, ModelNet40 OA has nearly no correlation to SONN OA.

Point cloud classifier getting more robust?

What makes a robust point cloud classifier?

• Three main components: 1) architecture design, 2) self- supervised pretraining 3) augmentation methods.

What makes a robust point cloud classifier?

- We conduct a comprehensive analysis and observe:
 - Proper architecture designs can improve robustness, e.g., advanced grouping and self-attention.
 - Pretrain signals can be transferred, benefiting robustness under specific corruptions.
 - Mixing and deformation augmentations can bring significant improvements to model robustness.

Enhancing Robustness in Point Cloud

- For verification, we propose a new architecture and a new augmentation technique strictly following our empirical findings.
- They *outperform* existing methods.

Our proposed architecture *RPC*

Our proposed augmentation WolfMix

H.1.2 الل ع

- 1.0

Conclusion

- The SoTA methods for point cloud classification on clean data are becoming **less robust** to random real-world corruptions.
- We highly encourage future research to **focus on classification robustness** so as to benefit real applications.

Code, Models & Dataset

Released at https://github.com/jiawei-ren/ModelNet-C

Semantic Shift

OOD Detection

Zero-shot / Few-shot / Long-tailed Learning

Corruptions / Perturbations / Domain Shifts

Vision + Language

Zhou et al., Learning to Prompt for Vision-Language Models, ArXiv 2021 Zhou et al., Conditional Prompt Learning for Vision-Language Models, CVPR 2022

Learning with discrete labels

• For image recognition we basically learn associations between images and discrete labels (represented by *randomly initialized vectors*)

Problems with discrete labels

• Difficult to scale the dataset

We're talking about millions of images

Ambiguity: a baby or a cat?

Problems with discrete labels

• Cannot generalize to new concepts (new data needs to be collected)

Learning with multi-modality signals

• Using natural language as supervision

- more accurate description
- can easily scale up the dataset (just search image-text pairs or use image & alt-text)

Large vision-language models

© ØpenAI

Learning Transferable Visual Models From Natural Language Supervision ICML 2021

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever OpenAl

Contrastive language-image pre-training

• Training pipeline

Radford et al. Learning transferable visual models from natural language supervision. ICML 2021.

Contrastive language-image pre-training

• Test time: can naturally do zero-shot recognition

Radford et al. Learning transferable visual models from natural language supervision. ICML 2021.

The classification weights (representing visual concepts) are synthesized from natural language, a.k.a. *prompting*

Remarkable zero-shot performance & robustness to domain shift

Figure 5. **Zero-shot CLIP is competitive with a fully super-vised baseline.** Across a 27 dataset eval suite, a zero-shot CLIP classifier outperforms a fully supervised linear classifier fitted on ResNet-50 features on 16 datasets, including ImageNet.

Radford et al. Learning transferable visual models from natural language supervision. ICML 2021.

Problem with hand-crafted prompt

• Difficult to tune the context words

Caltech101	Prompt	Accuracy
	a [CLASS].	80.77
1 - A	a photo of [CLASS].	78.99
	a photo of a [CLASS].	84.42
	[V] ₁ [V] ₂ [V] _M [CLASS].	92.00
	(a)	
Describable Textures (DTE) Prompt	Accuracy
Describable Textures (DTI) Prompt a photo of a [CLASS].	Accuracy 38.24
Describable Textures (DTE	Prompta photo of a [CLASS].a photo of a [CLASS] texture.	Accuracy 38.24 37.71
Describable Textures (DTE	Prompt a photo of a [CLASS]. a photo of a [CLASS] texture.	Accuracy 38.24 37.71 40.72
Describable Textures (DTE	Prompt a photo of a [CLASS]. a photo of a [CLASS] texture. [CLASS] texture. [V]1[V]2 [V]M [CLASS].	Accuracy 38.24 37.71 40.72 62.55

(d)

Question: Can we instead learn the context? (Yes, use prompt learning!)

Zhou et al. Learning to prompt for vision-language models. arXiv preprint 2021.

Context optimization (CoOp)

• Main idea: turn the context words into learnable vectors

Zhou et al. Learning to prompt for vision-language models. arXiv preprint 2021.

Pros: CoOp is a few-shot learner

• Evaluation on 11 datasets: ImageNet, Caltech101, OxfordPets, StanfordCars, Flowers102, Food101, FGVCAircraft, SUN397, DTD, EuroSAT and UCF101

Pros: CoOp is robust to domain shift

Table 1 Comparison with zero-shot CLIP on robustness to distribution shift using different vision backbones. M: CoOp's context length.

	Source		Tar	get	
Method	ImageNet	-V2	-Sketch	-A	-R
ResNet-50					
Zero-Shot CLIP	58.18	51.34	33.32	21.65	56.00
Linear Probe CLIP	55.87	45.97	19.07	12.74	34.86
CLIP + CoOp (M = 16)	62.95	55.11	32.74	22.12	54.96
CLIP + CoOp(M=4)	63.33	55.40	34.67	23.06	56.60
ResNet-101					
Zero-Shot CLIP	61.62	54.81	38.71	28.05	64.38
Linear Probe CLIP	59.75	50.05	26.80	19.44	47.19
CLIP + CoOp (M = 16)	66.60	58.66	39.08	28.89	63.00
CLIP + CoOp (M=4)	65.98	58.60	40.40	29.60	64.98
ViT-B/32					
Zero-Shot CLIP	62.05	54.79	40.82	29.57	65.99
Linear Probe CLIP	59.58	49.73	28.06	19.67	47.20
CLIP + CoOp (M = 16)	66.85	58.08	40.44	30.62	64.45
CLIP + CoOp (M=4)	66.34	58.24	41.48	31.34	65.78
ViT-B/16					
Zero-Shot CLIP	66.73	60.83	46.15	47.77	73.96
Linear Probe CLIP	65.85	56.26	34.77	35.68	58.43
CLIP + CoOp (M = 16)	71.92	64.18	46.71	48.41	74.32
CLIP + CoOp (M=4)	71.73	64.56	47.89	49.93	75.14

Shorter context length, better robustness

Zhou et al. Learning to prompt for vision-language models. arXiv preprint 2021.

Cons: soft prompt learning is difficult to interpret Conclusion: cannot use nearest

Table 4 The nearest words for each of the 16 context vectors learned by CoOp, with their distances shown in parentheses. N/A means non-Latin characters.

NANYANG TECHNOLOGICAL UNIVERSITY

#	ImageNet	Food101	OxfordPets	DTD	UCF101
1	potd (1.7136)	lc (0.6752)	tosc (2.5952)	boxed (0.9433)	meteorologist (1.5377)
2	that (1.4015)	enjoyed (0.5305)	judge (1.2635)	seed (1.0498)	exe (0.9807)
3	filmed (1.2275)	beh (0.5390)	fluffy (1.6099)	anna (0.8127)	parents (1.0654)
4	fruit (1.4864)	matches (0.5646)	cart (1.3958)	mountain (0.9509)	masterful (0.9528)
5	, (1.5863)	nytimes (0.6993)	harlan (2.2948)	eldest (0.7111)	fe (1.3574)
6	$^{\circ}(1.7502)$	prou (0.5905)	paw (1.3055)	pretty (0.8762)	thof (1.2841)
7	excluded (1.2355)	lower (0.5390)	incase (1.2215)	faces (0.7872)	where (0.9705)
8	cold (1.4654)	N/A	bie (1.5454)	honey (1.8414)	kristen (1.1921)
9	stery (1.6085)	minute (0.5672)	snuggle (1.1578)	series (1.6680)	imam (1.1297)
10	warri (1.3055)	$\sim (0.5529)$	along (1.8298)	$\cos(1.5571)$	near (0.8942)
11	marvelcomics (1.5638)	well (0.5659)	enjoyment (2.3495)	$\mod (1.2775)$	tummy (1.4303)
12	.:(1.7387)	ends (0.6113)	jt (1.3726)	lh (1.0382)	hel (0.7644)
13	N/A	mis (0.5826)	improving (1.3198)	won (0.9314)	boop (1.0491)
14	lation (1.5015)	somethin (0.6041)	srsly (1.6759)	replied (1.1429)	N/A
15	muh (1.4985)	seminar (0.5274)	asteroid (1.3395)	sent (1.3173)	facial (1.4452)
16	.# (1.9340)	N/A	N/A	piedmont (1.5198)	during (1.1755)

Zhou et al. Learning to prompt for vision-language models. arXiv preprint 2021.

Problem with CoOp

• Overfit base classes and fail to generalize to new classes

(b) The instance-conditional prompts learned by CoCoOp are much more generalizable than CoOp to the unseen classes.

Conditional context optimization (CoCoOp)

• Main idea: condition the context on each input image

Zhou et al. Conditional Prompt Learning for Vision-Language Models. CVPR 2022.

Findings

•	Conditional prompt learning is more generalizable
	Table 1. Comparison of CLIP, CoOp and CoCoOp in the base-to-new generalization setting. For learning-based methods (Co

Table 1. Comparison of CLIP, CoOp and CoCoOp in the base-to-new generalization setting. For learning-based methods (CoOp and CoCoOp), their prompts are learned from the base classes (16 shots). The results strongly justify the strong generalizability of conditional prompt learning. H: Harmonic mean (to highlight the generalization trade-off [54]).

(a) Ave	erage over	r 11 datas	ets.		(b) Imag	eNet.			(c) Calter	h101.	
	Base	New	Н		Base	New	Н		Base	New	Н
CLIP	69.34	74.22	71.70	CLIP	72.43	68.14	70.22	CLIP	96.84	94.00	95.40
CoOp	82.69	63.22	71.66	CoOp	76.47	67.88	71.92	CoOp	98.00	89.81	93.73
CoCoOp	80.47	71.69	75.83	CoCoOp	75.98	70.43	73.10	CoCoOp	97.96	93.81	95.84
	(d) Oxfor	dPets.			(e) Stanfor	rdCars.			(f) Flower	rs102.	
	Base	New	H		Base	New	Н		Base	New	Н
CLIP	91.17	97.26	94.12	CLIP	63.37	74.89	68.65	CLIP	72.08	77.80	74.83
CoOp	93.67	95.29	94.47	CoOp	78.12	60.40	68.13	CoOp	97.60	59.67	74.06
CoCoOp	95.20	97.69	96.43	CoCoOp	70.49	73.59	72.01	CoCoOp	94.87	71.75	81.71
	(g) Food	±101.		(h) FGVCA	Aircraft.			(i) SUN	397.	
	Base	New	Н		Base	New	Н		Base	New	Н
CLIP	90.10	91.22	90.66	CLIP	27.19	36.29	31.09	CLIP	69.36	75.35	72.23
CoOp	88.33	82.26	85.19	CoOp	40.44	22.30	28.75	CoOp	80.60	65.89	72.51
CoCoOp	90.70	91.29	90.99	CoCoOp	33.41	23.71	27.74	CoCoOp	79.74	76.86	78.27
	(j) DT	D.			(k) Euro	oSAT.			(l) UCI	7101.	
	Base	New	Н		Base	New	H		Base	New	H
CLIP	53.24	59.90	56.37	CLIP	56.48	64.05	60.03	CLIP	70.53	77.50	73.85
CoOp	79.44	41.18	54.24	CoOp	92.19	54.74	68.69	CoOp	84.69	56.05	67.46
CoCoOp	77.01	56.00	64.85	CoCoOp	87.49	60.04	71.21	CoCoOp	82.33	73.45	77.64

Findings

• Sacrifice accuracy on base classes but the gains on generalization are larger

Zhou et al. Conditional Prompt Learning for Vision-Language Models. CVPR 2022.

Findings

• Conditional prompt learning is also more transferable

Table 2. Comparison of prompt learning methods in the cross-dataset transfer setting. Prompts applied to the 10 target datasets are learned from ImageNet (16 images per class). Clearly, CoCoOp demonstrates better transferability than CoOp. Δ denotes CoCoOp's gain over CoOp.

	Source		Target										
	ImageNet	Caltech101	OxfordPets	StanfordCars	Flowers102	Food101	FGVCAircraft	SUN397	DTD	EuroSAT	UCF101	Average	
CoOp [62] CoCoOp	71.51 71.02	93.70 94.43	89.14 90.14	64.51 65.32	68.71 71.88	85.30 86.06	18.47 22.94	64.15 67.36	41.92 45.73	46.39 45.37	66.55 68.21	63.88 65.74	
Δ	-0.49	+0.73	+1.00	+0.81	+3.17	+0.76	+4.47	+3.21	+3.81	-1.02	+1.66	+1.86	

Findings

• More robust to domain shift as well

Table 3. Comparison of manual and learning-based prompts in domain generalization. CoOp and CoCoOp use as training data 16 images from each of the 1,000 classes on ImageNet. In general, CoCoOp is more domain-generalizable than CoOp.

		Source		Targe	t	
	Learnable?	ImageNet	ImageNetV2	ImageNet-Sketch	ImageNet-A	ImageNet-R
CLIP [40]		66.73	60.83	46.15	47.77	73.96
CoOp [62]	\checkmark	71.51	64.20	47.99	49.71	75.21
CoCoOp	\checkmark	71.02	64.07	48.75	50.63	76.18

Code and models

Released at <u>https://github.com/KaiyangZhou/CoOp</u>

 \equiv README.md

Prompt Learning for Vision-Language Models

This repo contains the codebase of a series of research projects focused on adapting vision-language models like CLIP to downstream datasets via *prompt learning*:

- Conditional Prompt Learning for Vision-Language Models, in CVPR, 2022.
- Learning to Prompt for Vision-Language Models, arXiv, 2021.

<u>2D</u> + <u>3D</u>

Hong et al., Versatile Multi-Modal Pre-Training for Human-Centric Perception, CVPR 2022 (Oral)

Why Human-Centric Pre-train?

Vital role in many applications

Expensive and dense annotations

Part Segmentation

3D Keypoints

Multi-modal Nature of Human Data

How to

combine both

in pre-train?

Pros: rich texture/ 3D geometry Cons: low-level and noisy

RGB

Depth

Infrared

Pros: rich in semantics and structured Cons: insufficient details

2D Keypoints

3D Keypoints

HCMoCo – Principles of Learning Targets

Global

1) Mutual Information Maximization

Dense

2) Continuous and Ordinal Feature Distribution

Sparse

3) Structure-Aware Semantic Consistency

HCMoCo – General Paradigm

High Performance on Downstream Tasks

One-time pre-training, boost the performance of all the downstream tasks of multiple modalities.

TECHNOLOGICAL

Versatility of HCMoCo

(a) Cross-Modality Supervision

(b) Missing-Modality Inference

NANYANG TECHNOLOGICAL

UNIVERSITY

SINGAPORE

S-LAB

FOR ADVANCE

INTELLIGENCE

43.88

Ours

64.27

96.15

43.98

63.66

96.34

Dataset – NTURGBD-Parsing-4K

- The first RGB-D human parsing dataset
- Uniformly sampled 3926 samples from NTU RGB+D (60/120)
- Annotate 24 human body parts

Code, Models & Dataset

Released at https://github.com/hongfz16/HCMoCo

Versatile Multi-Modal Pre-Training for Human-Centric Perception

Fangzhou Hong1Liang Pan1Zhongang Cai^{1,2,3}Ziwei Liu1*¹S-Lab, Nanyang Technological University²SenseTime Research³Shanghai Al LaboratoryAccepted to CVPR 2022 (Oral)

This repository contains the official implementation of *Versatile Multi-Modal Pre-Training for Human-Centric Perception*. For brevity, we name our method **HCMoCo**.

Generalization in Vision Models

Semantic Shift

OOD Detection

Zero-shot / Few-shot / Long-tailed Learning

Corruptions / Perturbations / Domain Shifts

Covariate Shift

Out-of-Distribution Detection

Yang et al., Generalized Out-of-Distribution Detection: A Survey, ArXiv 2021 Yang et al., Full-Spectrum Out-of-Distribution Detection, ArXiv 2022

Why We Write The Survey:

- Several topics share quite similar goals:
 - Anomaly Detection (AD)
 - Novelty Detection (ND)
 - Open Set Recognition (OSR)
 - Out-of-Distribution (OOD) Detection
 - Outlier Detection (OD)
- We discuss the commonalty and difference among them to <u>eliminate the confusion</u> for practitioners and newcomers.
- A generic framework generalized OOD detection is proposed to encompasses all five problems, which can be seen as special cases or sub-tasks and are easier to distinguish.

https://github.com/Jingkang50/OODSurvey

*Exception: In OOD Detection, density-based methods do not require ID classification

Covariate Shift Detection Semantic Shift Detection **Generic Framework:** - Generalized OOD Detection Single/ Multi-Class Single-Class Multi-Class ID Classification Not Required **Anomaly Detection** Sensory Semantic Anomaly Anomaly fish dog bird cat car Detection Detection real **Novelty Detection** Inductive Covariate P(X) Shift **One-Class** Multi-Class Novelty Novelty Detection Detection cartoon **Open Set** Required Recognition sketch DITA **Out-of-Distribution Fransductive** Detection Semantic P(Y) Shift No **Outlier Detection**

https://github.com/Jingkang50/OODSurvey

Generalized OOD Detection: A Survey

Generic Framework:

- Generalized OOD Detection

https://github.com/Jingkang50/OODSurvey

Methodology Taxonomy

		8 3 1 1. Classic Donsity Est				
		3 5.1.1. Classic Delisity Est.				
	§ 3.1	§ 3.1.2: NN-based Density Est.				
	Density	§ 3.1.3: Energy-based Models				
		§ 3.1.4: Frequency-based Methods				
8.2		§ 3.2.1: Sparse Representation				
9 3 Anomaly Detection &	§ 3.2 Reconstruction	§ 3.2.2: Reconstruction-Error				
One-Class Novelty Detection		§ 3.3.1: One-Class Classification				
Noverty Detection	§ 3.3 Classification	§ 3.3.2: PU Learning				
		§ 3.3.3: Self-Supervised Learning				
	§ 3.4:	Distance-based Methods				
	§ 3.5:	Gradient-based Methods				
	§ 3.6: Discu	ussion and Theoretical Analysis				

§ 5.3: Distance-based Methods

https://github.com/Jingkang50/OODSurvey

Benchmarking Generalized OOD Detection

OpenOOD: https://github.com/Jingkang50/OpenOOD

Code 🤆	🕑 Issues 6 🛛 १५ Pull requests 3	🖓 Discussions 🕑 Actions 🗄 Project	s 🖽 Wiki 🕕 Security 🗠 Insights	ĝ Settings	
	양 main → 양 9 branches 🛇 0	tags	Go to file Add file - Code -	About	愈
	Jingkang50 Merge pull request #	44 from Jingkang50/dev_jkyang …	aea7e8d 10 days ago 🙂 100 commits	Benchmarking Generalized Out-of- Distribution Detection	
	assets	update readme	3 months ago	outlier-detection robustness	
	Configs	update fsood	11 days ago	anomaly-detection novelty-detection	
	openood	update fsood	11 days ago	out-of-distribution-detection	
	scripts	update fsood	11 days ago	C Readme	
	tools	fix covid	17 days ago	矿 MIT License	
	🗅 .gitignore	load fsood	12 days ago	☆ 39 stars	
	.pre-commit-config.yaml	fix mds	3 months ago	 4 watching 3 forks 	
		Initial commit	5 months ago	6 0 10 K3	
	C README.md	update readme	10 days ago	Releases	
	Codespell_ignored.txt	rename codespell	3 months ago	No releases published	
	environment.yml	update fsood	11 days ago	Create a new release	
	🗅 main.py	fix fsood	3 months ago		
				Packages	
	E README.md		0	No packages published Publish your first package	

Contributors 3

Jingkang50 Jingkang Yang

Prophet-C Pengyun Wang

JediWarriorZou DEJIAN ZOU

OpenOOD: Benchmarking Generalized OOD Detection

This repository reproduces representative methods within the Generalized Out-of-Distribution Detection Framework, aiming to make a fair comparison across methods that initially developed for anomaly detection, novelty detection, open set recognition, and out-of-distribution detection. This codebase is still under construction. Comments, issues, contributions, and collaborations are all welcomed!

Anomaly Detection

- DeepSVDD (ICML'18)
- KDAD (arXiv'20)
- CutPaste (CVPR'2021)
- PatchCore (arXiv'2021)
- DRÆM (ICCV'21)

▼ Open Set Recognition

- OpenMax (CVPR'16)
 CROSR (CVPR'19) (@OmegaDING in progress)
- ARPL (TPAMI'21)
- OpenGAN (ICCV'21)

Out-of-Distribution Detection

No Extra Data:

- MSP (ICLR'17)
- ODIN (ICLR'18)
- MDS (NeurlPS'18)
- CONF (arXiv'18) (@JediWarriorZou in progress)
- G-ODIN (CVPR'20) (@Prophet-C in progress)
- Gram (ICML'20) (@Zzitang in progress)
- DUQ (ICML'20) (@Zzitang in progress)
- CSI (NeurIPS'20) (@Prophet-C in progress)
- EBO (NeurIPS'20)
- MOS (CVPR'21)
- MOOD (CVPR'21)
- GradNorm (NeurIPS'21) (@haoqiwang in progress)
- ReAct (NeurIPS'21)
- VOS (ICLR'22)
- VIM (CVPR'22) (@haoqiwang in progress)
- SEM (arXiv'22)
- With Extra Data:
- OE (ICLR'19)
- MCD (ICCV'19)
- UDG (ICCV'21)

Problem with Classic OOD Benchmark

Problem on current OOD Benchmarks

- Classic OOD Benchmark:
 - Saturated benchmark
 - Model can only rely on covariate shift detection to performing OOD detection
 - But OOD detection should focus on semantic anomalies

	$\mathrm{FPR95}\downarrow$					$AUROC \uparrow$					AUPR ↑							
	MSP	ODIN	MDS	EBO	SEM	$p(\boldsymbol{x}_n)$	MSP	ODIN	MDS	EBO	SEM	$p(\boldsymbol{x}_n)$	MSP	ODIN	MDS	EBO	SEM	$p(\boldsymbol{x}_n)$
- DIGITS (ID: MN)	(ST)																	
notMNIST	43.09	37.70	44.06	1.77	2.64	0.78	88.77	89.85	88.44	99.67	99.50	99.79	75.72	77.83	75.97	99.36	99.09	99.57
FashionMNIST	2.54	1.08	1.05	0.27	40.09	0.00	99.44	99.70	99.72	99.90	95.02	99.94	99.64	99.77	99.76	99.94	97.63	99.97
Mean (Near-OOD)	20.05	13.48	20.54	2.68	27.85	0.46	96.06	96.97	95.85	99.49	93.85	99.78	94.07	94.72	92.66	99.40	93.23	99.73
Texture	2.43	0.94	0.67	0.23	90.69	0.02	99.34	99.75	99.81	99.93	77.26	99.91	99.58	99.84	99.84	99.96	87.56	99.95
CIFAR-10	7.05	3.06	3.18	0.18	54.43	0.00	98.68	99.31	99.30	99.88	94.19	99.97	98.72	99.27	99.12	99.88	95.86	99.97
Tiny-ImageNet	6.28	2.93	3.13	0.55	59.52	0.00	98.78	99.36	99.37	99.79	93.70	99.96	98.78	99.33	99.25	99.79	95.54	99.96
Places365	9.92	4.59	4.12	0.45	58.07	0.00	98.19	99.06	99.17	99.81	93.82	99.96	94.87	97.01	96.84	99.42	91.32	99.88
Mean (Far-OOD)	6.45	2.92	2.87	0.36	53.03	0.00	98.77	99.36	99.39	99.84	94.18	99.96	98.00	98.84	98.74	99.76	95.09	99.94

Table: Results on Standard OOD Detection Benchmarks
Full-Spectrum OOD Benchmark

- Classic OOD Benchmark:
 - Saturated benchmark
 - Model can only rely on covariate shift detection to performing OOD detection
 - But OOD detection should focus on semantic anomalies
- Full-Spectrum OOD Benchmark:
 - Introducing Covariate-Shifted In-Distribution Data
 - A better benchmark to evaluate semantic shift detection capability
 - Promoting robustness in OOD detection

Full-Spectrum OOD Benchmark

Full-Spectrum OOD Benchmark:

- Introducing Covariate-Shifted In-Distribution Data
- A better benchmark to evaluate semantic shift detection capability
- Promoting robustness in OOD detection
- Most previous methods completely fail on FS-OOD setting
- In fact, CIFAR-level OOD detection benchmarks are still not saturated and may still need more exploration

[Jingkang Yang, Kaiyang Zhou, Ziwei Liu. Full-Spectrum OOD Detection. arXiv:2114.05306. 2022]

Figure: Large-Scale Full-Spectrum OOD Detection Benchmarks

Code, Models & Dataset

OpenOOD: https://github.com/Jingkang50/OpenOOD

ဖို main 👻 ဖို 9 branches 🚫 0	tags	Go to file Add file - Code -	About	礅
Jingkang50 Merge pull request	#44 from Jingkang50/dev_jkyang …	aea7e8d 10 days ago 🗿 100 commits	Benchmarking Generalized Out-of- Distribution Detection	
assets	update readme	3 months ago	outlier-detection robustness	
Configs	update fsood	11 days ago	anomaly-detection novelty-detection	
openood	update fsood	11 days ago	out-of-distribution-detection	
scripts	update fsood	11 days ago	D Readme	
iools	fix covid	17 days ago	述 MIT License	
🗅 .gitignore	load fsood	12 days ago	☆ 39 stars	
.pre-commit-config.yaml	fix mds	3 months ago	 4 watching 3 forks 	
	Initial commit	5 months ago	\$ 310173	
C README.md	update readme	10 days ago	Releases	
C codespell_ignored.txt	rename codespell	3 months ago	No releases published	
🗅 environment.yml	update fsood	11 days ago	Create a new release	
P main.pv	fix fsood	3 months ago		

Contributors 3

Jingkang50 Jingkang Yang

Prophet-C Pengyun Wang

JediWarriorZou DEJIAN ZOU

OpenOOD: Benchmarking Generalized OOD Detection

This repository reproduces representative methods within the Generalized Out-of-Distribution Detection Framework, aiming to make a fair comparison across methods that initially developed for anomaly detection, novelty detection, open set recognition, and out-of-distribution detection. This codebase is still under construction. Comments, issues, contributions, and collaborations are all welcomed!

▼ Anomaly Detection ■ DeepSVDD (ICML'18)

UDG (ICCV'21)

KDAD (arXiv'20)	
CutPaste (CVPR'2021)	
PatchCore (arXiv'2021)	
DRÆM (ICCV'21)	
Open Set Recognition	
OpenMax (CVPR'16)	
CROSR (CVPR'19) (@OmegaDING in progress)	
ARPL (TPAMI'21)	
OpenGAN (ICCV'21)	
Out-of-Distribution Detection	
No Extra Data:	
MSP (ICLR'17)	
ODIN (ICLR'18)	
MDS (NeurIPS'18)	
CONF (arXiv'18) (@JediWarriorZou in progress)	
G-ODIN (CVPR'20) (@Prophet-C in progress)	
Gram (ICML'20) (@Zzitang in progress)	
DUQ (ICML'20) (@Zzitang in progress)	
CSI (NeurIPS'20) (@Prophet-C in progress)	
EBO (NeurlPS'20)	
MOS (CVPR'21)	
MOOD (CVPR'21)	
GradNorm (NeurIPS'21) (@haoqiwang in progress)	
ReAct (NeurIPS'21)	
VOS (ICLR'22)	
VIM (CVPR'22) (@haoqiwang in progress)	
SEM (arXiv'22)	
With Extra Data:	
OE (ICLR'19)	

Thank you for listening!

Semantic Shift

OOD Detection

Zero-shot / Few-shot / Long-tailed Learning

Corruptions / Perturbations / Domain Shifts

Covariate Shift

