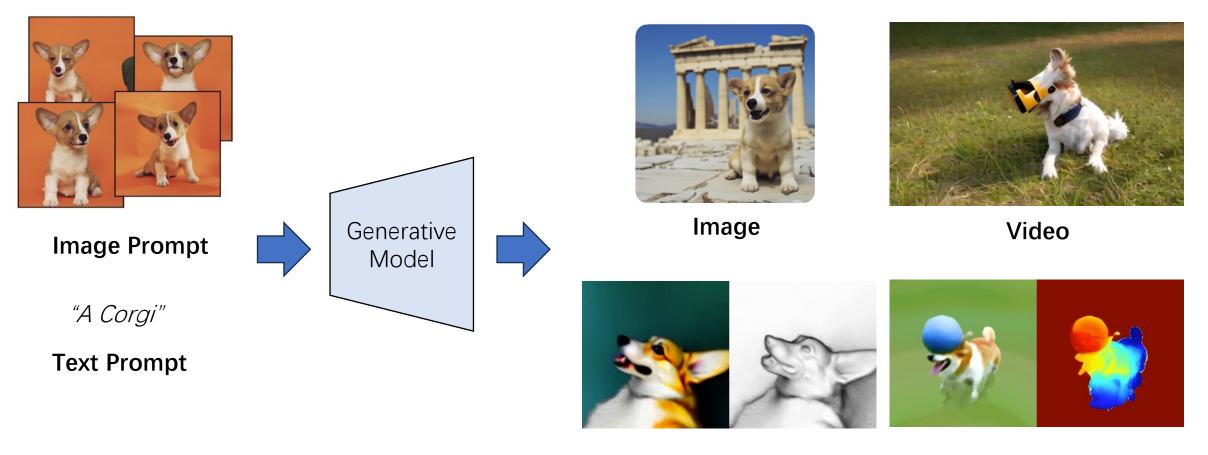
Prompting in Visual Generation

Ziwei Liu Nanyang Technological University

S-LAB FOR ADVANCED INTELLIGENCE

Prompting in Generation



3D

4D Dynamic Scene

S-LAB FOR ADVANCED INTELLIGENCE

Text to Image Generation

Text to Image Generation

• Prompt: An astronaut riding a horse in photorealistic style.

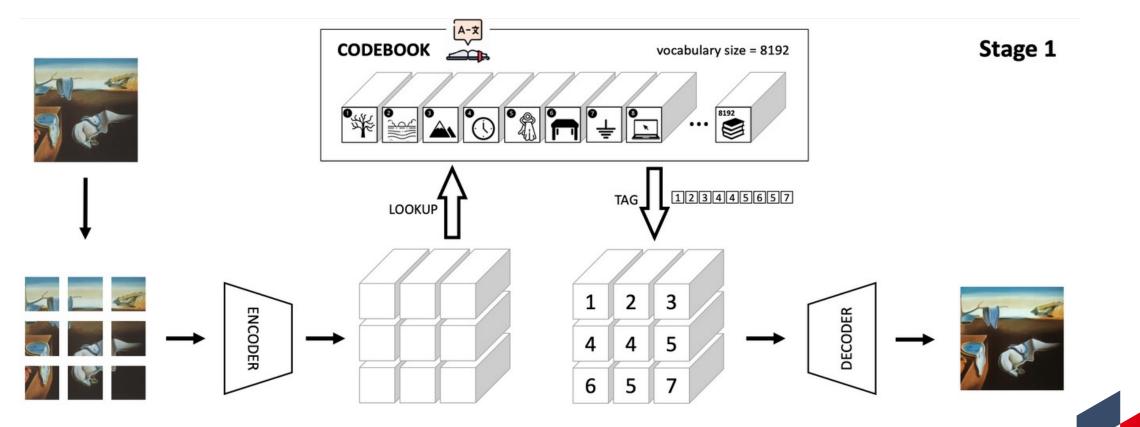
Source: https://openai.com/dall-e-2

Text to Image Generation

- VQGAN-based Methods
 - DALLE
- Diffusion-based Methods
 - GLIDE, DALEE2, Stable Diffusion
- GAN-based Methods
 - GigaGAN
- Generation on Specialized data
 - Text2Human

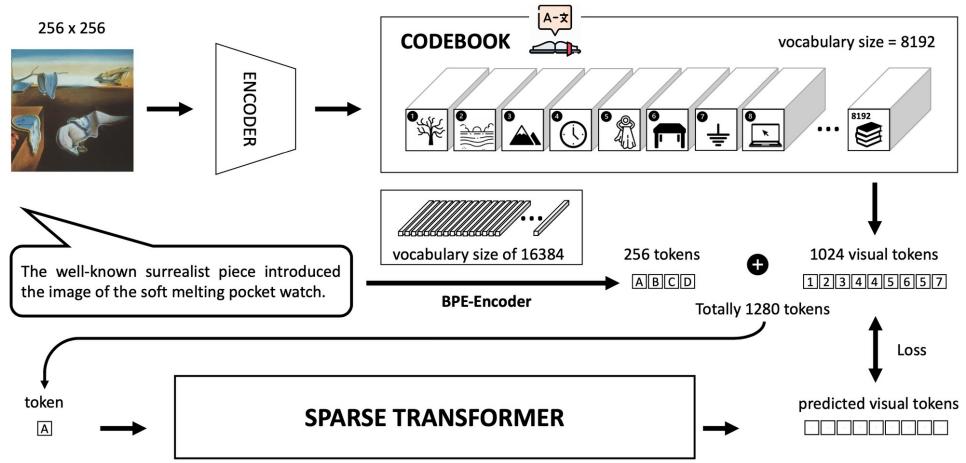
DALLE

• Stage 1: Learning the Visual Codebook



DALLE

• Stage 2: Learning the Prior



Ramesh et al., Zero-Shot Text-to-Image Generation, 2021

GLIDE

- Diffusion Models
 - Markov chain of latent variables by progressively adding Gaussian noise to samples

 $q(x_t|x_{t-1}) \coloneqq \mathcal{N}(x_t; \sqrt{\alpha_t}x_{t-1}, (1-\alpha_t)\mathcal{I})$

- Learn a model to approximate the true posterior $p_{\theta}(x_{t-1}|x_t) \coloneqq \mathcal{N}(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$
- The model is trained to predict the added noise $L_{\text{simple}} \coloneqq E_{t \sim [1,T], x_0 \sim q(x_0), \epsilon \sim \mathcal{N}(0,\mathbf{I})}[||\epsilon - \epsilon_{\theta}(x_t,t)||^2]$
- Guided Diffusion

 $\hat{\mu}_{\theta}(x_t|y) = \mu_{\theta}(x_t|y) + s \cdot \Sigma_{\theta}(x_t|y) \nabla_{x_t} \log p_{\phi}(y|x_t)$

Nichol et al., GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models, 2022

GLIDE

• Classifier-free guidance

$$\hat{\epsilon}_{\theta}(x_t|y) = \epsilon_{\theta}(x_t|\emptyset) + s \cdot (\epsilon_{\theta}(x_t|y) - \epsilon_{\theta}(x_t|\emptyset))$$

• CLIP Guidance

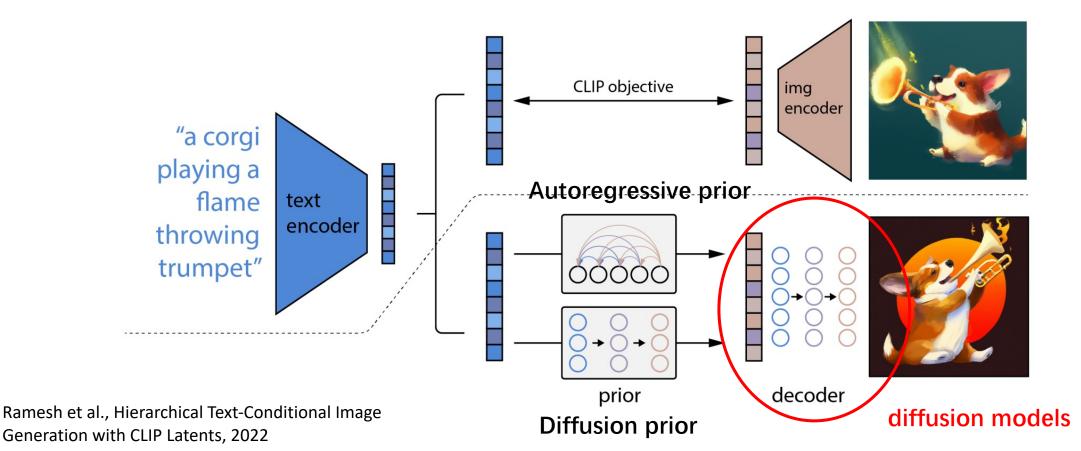
 $\hat{\mu}_{\theta}(x_t|c) = \mu_{\theta}(x_t|c) + s \cdot \Sigma_{\theta}(x_t|c) \nabla_{x_t} \left(f(x_t) \cdot g(c) \right)$

• Conclusion: Classifier-free guidance is preferred by human evaluators for both photorealism and caption similarity

Nichol et al., GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models, 2022

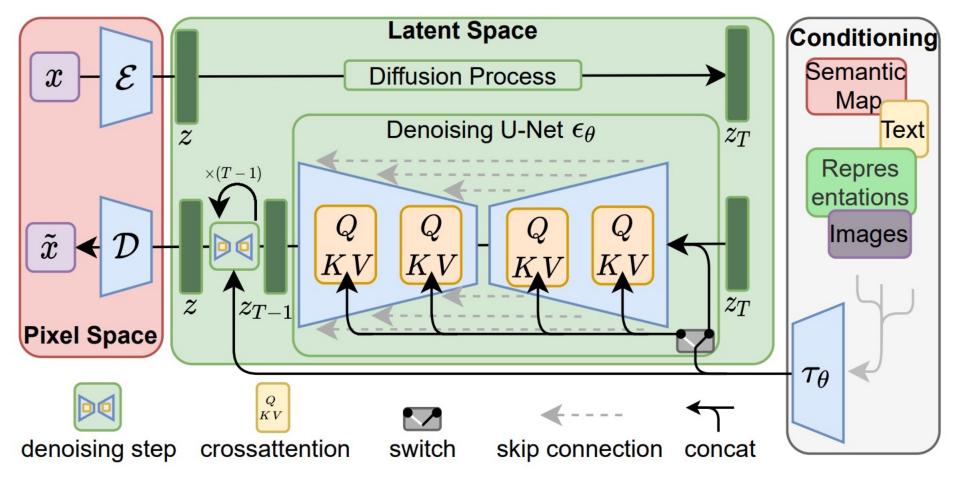
DALLE2

- Two key components:
 - Prior: produces CLIP Image Embeddings conditioned on captions
 - Decoder: produces images conditioned on CLIP Image Embeddings



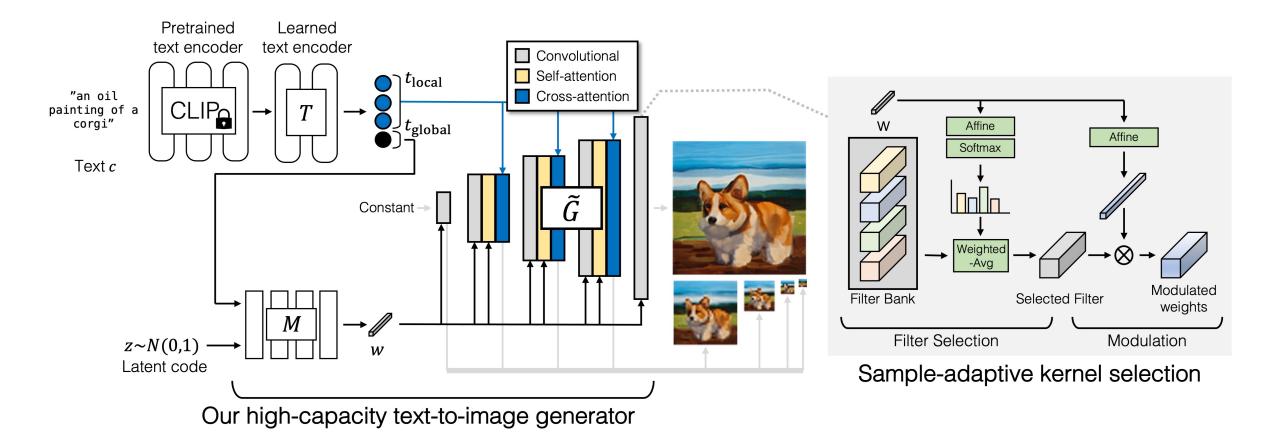
Stable Diffusion

• Encode the images into the latent space



Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models, 2022

GigaGAN



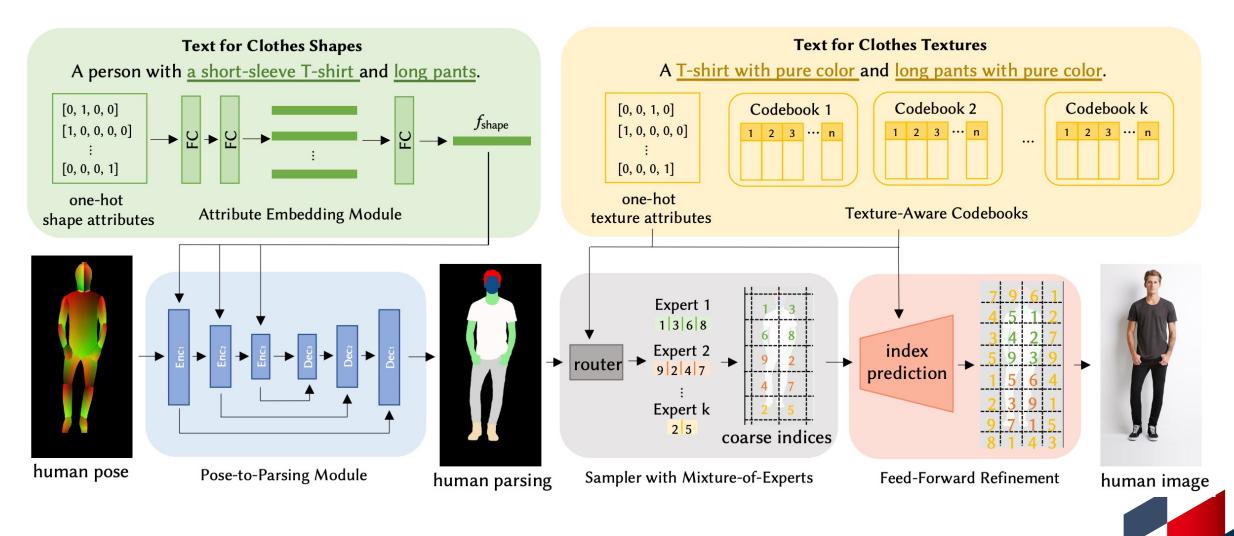


Image Prompt

S-LAB

• Prompting for Appearance Generation

- Optimization-Based
 - Textual Inversion
 - DreamBooth
- Encoder-Based
 - Tuning Encoder
 - ELITE
 - Taming Encoder
- Prompting for Relation Generation
 - ReVersion

Image Prompt

S-LAB

FOR ADVANCED

• Prompting for Appearance Generation

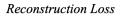
- Optimization-Based
 - Textual Inversion
 - DreamBooth
- Encoder-Based
 - Tuning Encoder
 - ELITE
 - Taming Encoder
- Prompting for Relation Generation
 - ReVersion

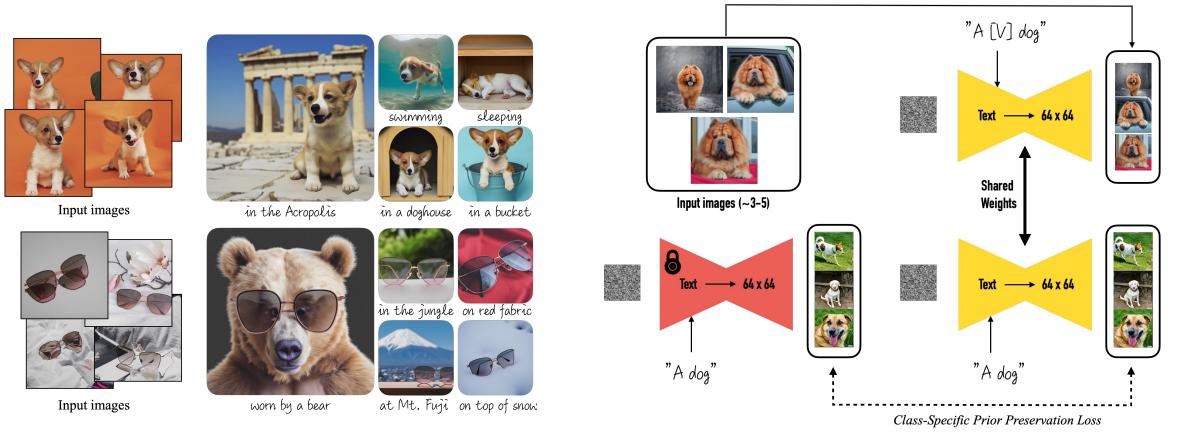
Textual Inversion

- Task: prompting for appearance generation (personalized generation)
- Method: optimize a text token: $v_* = \arg \min \mathbb{E}_{z \sim \mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon \epsilon_{\theta}(z_t, t, c_{\theta}(y))\|_2^2 \right]$

An Image is Worth One Word: Personalizing Text-to-Image Generation using Textual Inversion (ICLR 2023)

DreamBooth





- Task: prompting for appearance generation (personalized generation)
- Method: fine-tune to obtain a personalized text-to-image model

DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation (CVPR 2023)

Image Prompt

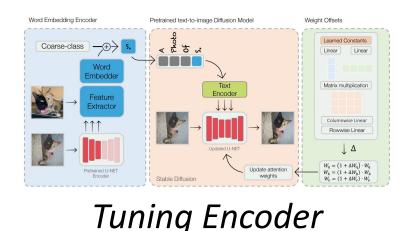
S-LAB

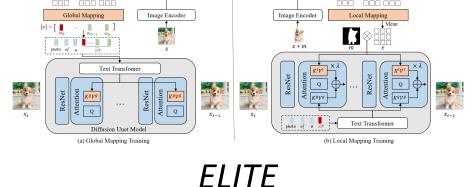
FOR ADVANCED

Prompting for Appearance Generation

- Optimization-Based
 - Textual Inversion
 - DreamBooth
- Encoder-Based
 - Tuning Encoder
 - ELITE
 - Taming Encoder
- Prompting for Relation Generation
 - ReVersion

Encoder-Based

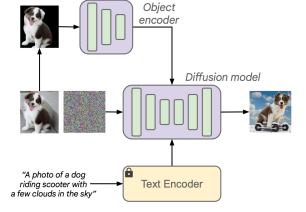




rainable

Multi-layer Embedding

Multi-layer Embeddings

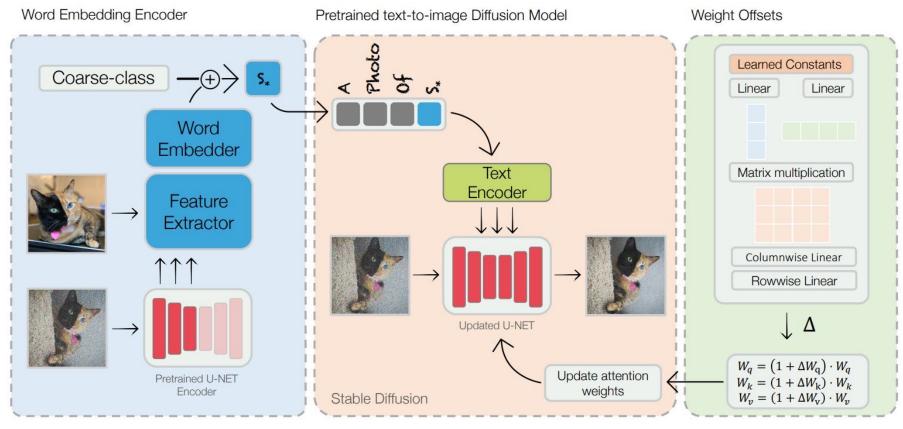


Taming Encoder

- Fast: a few optimization steps
- Memory Efficient
- One-Shot

Encoder-based Domain Tuning for Fast Personalization of Text-to-Image Models (2023) ELITE: Encoding Visual Concepts into Textual Embeddings for Customized Text-to-Image Generation (2023) Taming encoder for zero fine-tuning image customization with text-to-image diffusion models (2023)

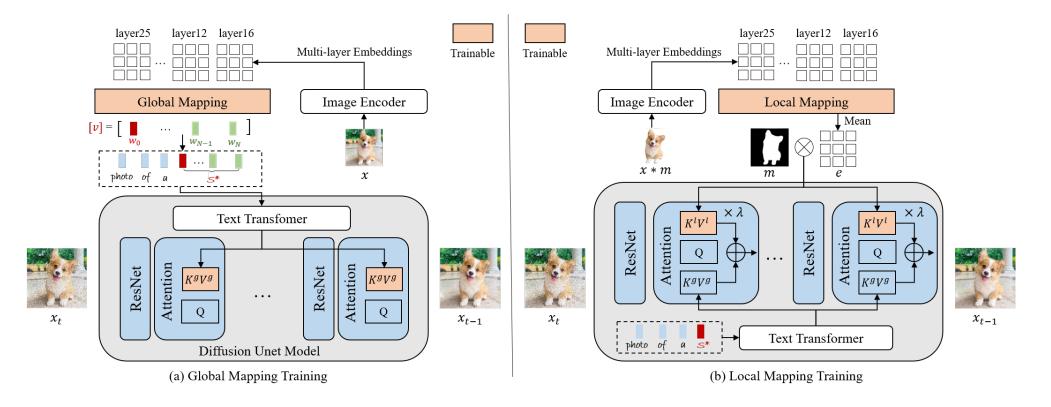
Tuning Encoder



- Domain-Specific Encoder
- Weight Offsets

Encoder-based Domain Tuning for Fast Personalization of Text-to-Image Models (2023)

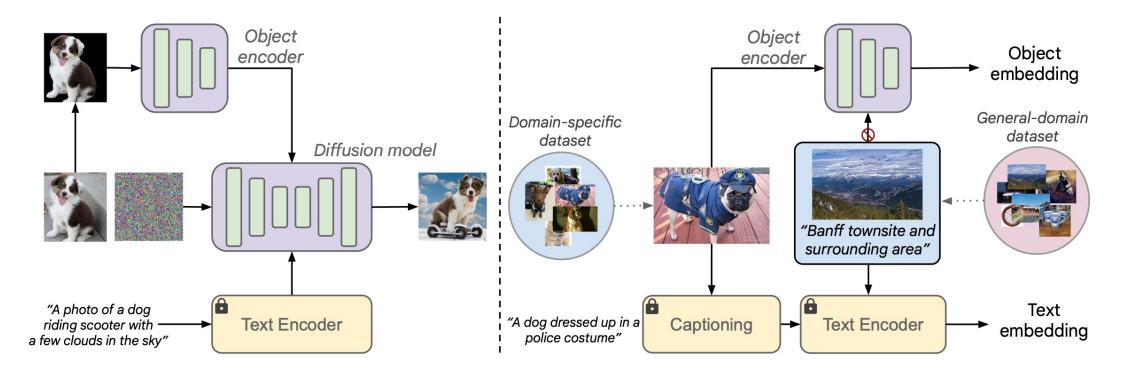
ELITE



- Global Mapping Network Text Embeddings
- Local Mapping Network Details

ELITE: Encoding Visual Concepts into Textual Embeddings for Customized Text-to-Image Generation (2023)

Taming Encoder



- Background Removal + Encoder
- Triplet Preparation Scheme

Taming encoder for zero fine-tuning image customization with text-to-image diffusion models (2023)

Image Prompt

S-LAB

FOR ADVANCED

• Prompting for Appearance Generation

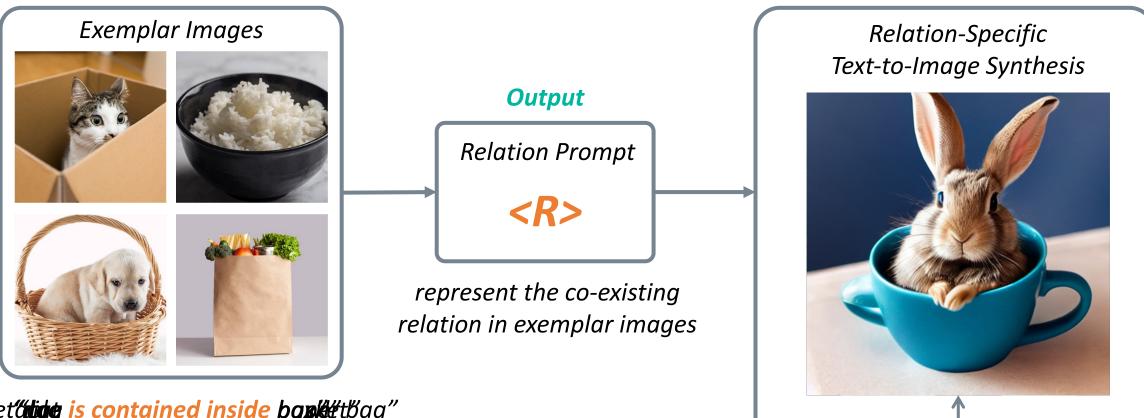
- Optimization-Based
 - Textual Inversion
 - DreamBooth
- Encoder-Based
 - Tuning Encoder
 - ELITE
 - Taming Encoder
- Prompting for Relation Generation
 - ReVersion

ReVersion

Input

Application

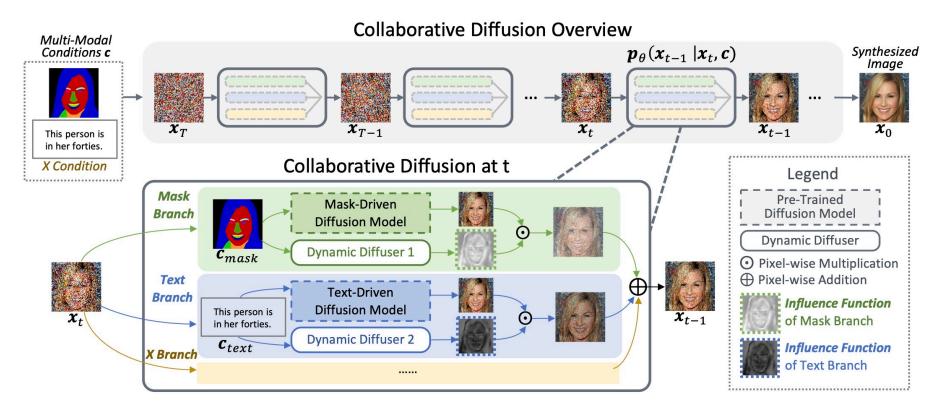
"Spicteralskein <R> þapkertbag"



"veget"didg is contained inside paper bage"

ReVersion: Diffusion-Based Relation Inversion from Images (2023)

Collaborative Diffusion



• Use model collaboration to simultaneously accept different types of prompt: linguistic, visual

Collaborative Diffusion for Multi-Modal Face Generation and Editing (CVPR 2023)

S-LAB FOR ADVANCED INTELLIGENCE

- Auto-regressive methods
 - VideoGPT
 - TATS
 - Phenaki
- Diffusion models
 - Imagen Video
 - Gen1
 - Text2Performer

- Auto-regressive methods
 - VideoGPT
 - TATS
 - Phenaki
- Diffusion models
 - Imagen Video
 - Gen1
 - Text2Performer

T2V: VideoGPT

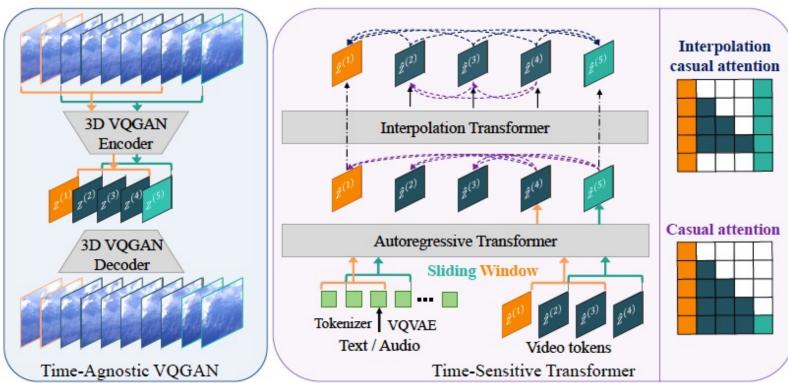
- VQGAN: learn a set of discrete latent codes from raw pixels of the video frames.
- Transformer: learn a prior over the VQ-VAE latent codes.



T2V: TATS

quality degradation.

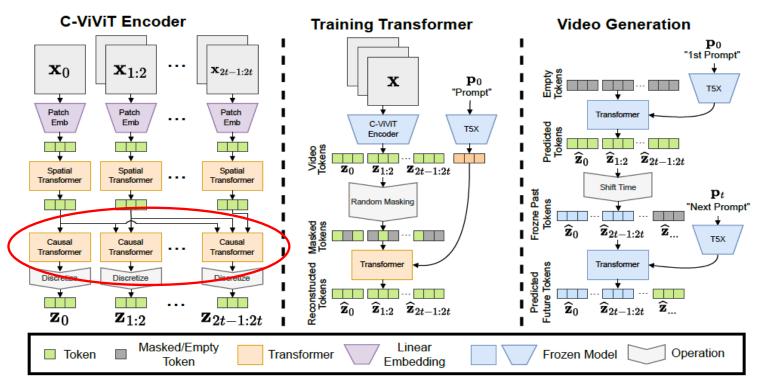
- NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE S-LAB FOR ADVANCED INTELLIGENCE
- 3D VQGAN: replacing 2D convolution operations with 3D convolutions for modeling videos.
- Transformer: the hierarchical transformer can model longer time dependence and delay the



NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

T2V: Phenaki

- Encoder-decoder model: compress videos to discrete embeddings.
 - Causal attention makes the C-ViViT encoder autoregressive and enables it to handle a variable number of input frames.
- Transformer model: translate text embeddings to video tokens.



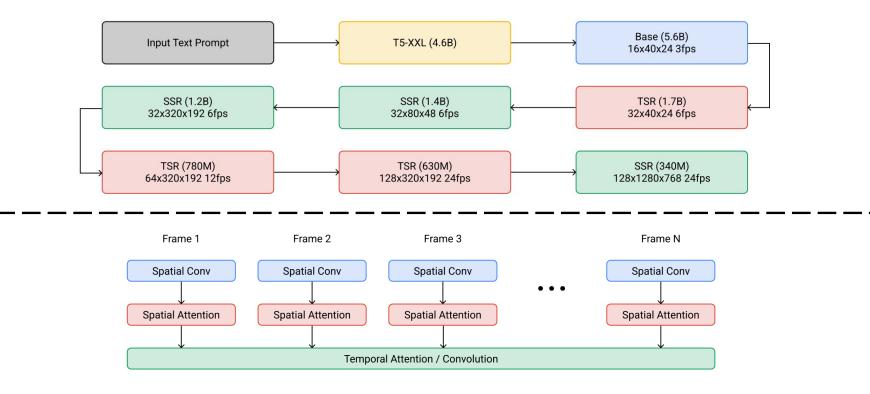
Villegas et al. Phenaki: Variable Length Video Generation From Open Domain Textual Description

- Auto-regressive methods
 - VideoGPT
 - TATS
 - Phenaki
- Diffusion models
 - Imagen Video
 - Gen1
 - Text2Performer

T2V: Imagen video

- Cascaded Diffusion Models.
 - 1 frozen text encoder, 1 base video diffusion model, 3 SSR (spatial super-resolution), and 3

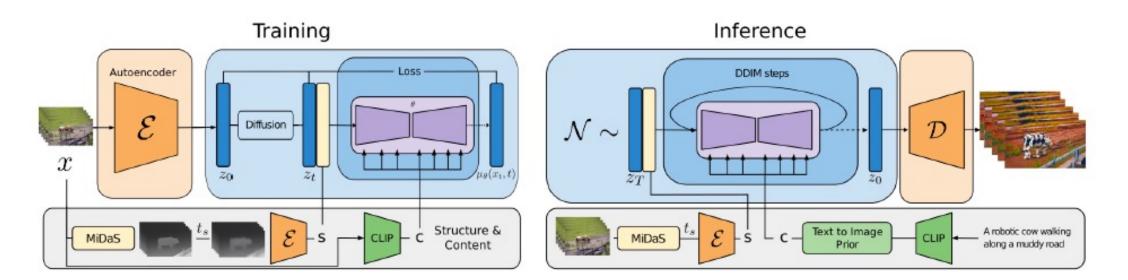
TSR (temporal superresolution) models – for a total of 7 video diffusion models



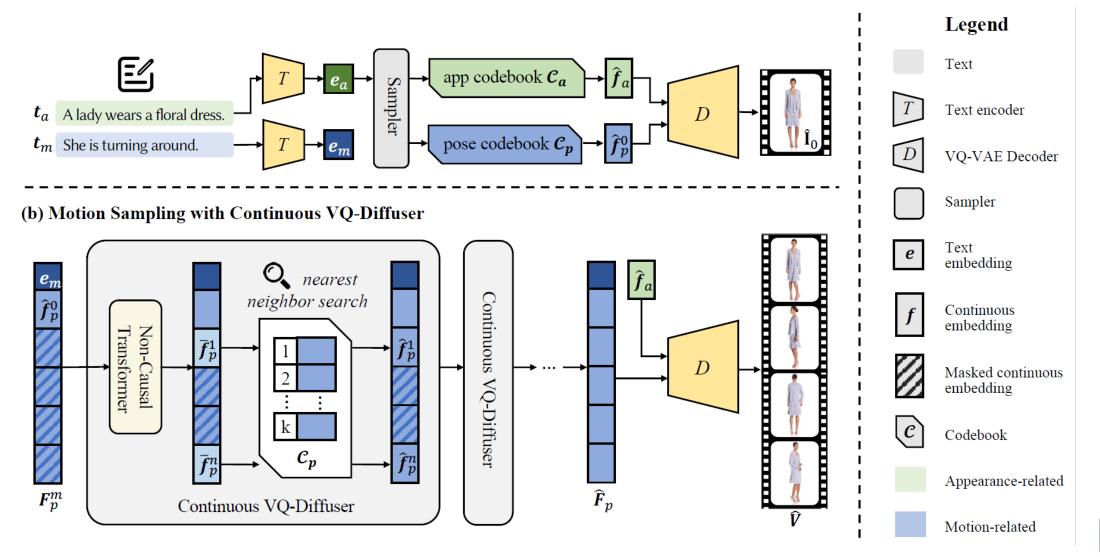
NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

T2V: Gen1

- Diffusion model: introduce temporal layers into a pre-trained image latent diffusion model
- Structure representation: utilize depth maps to provide control over structure and content fidelity.
- Content Representation: utilize CLIP to produce image (training) or text (inference) embeddings.



T2V: Text2Performer



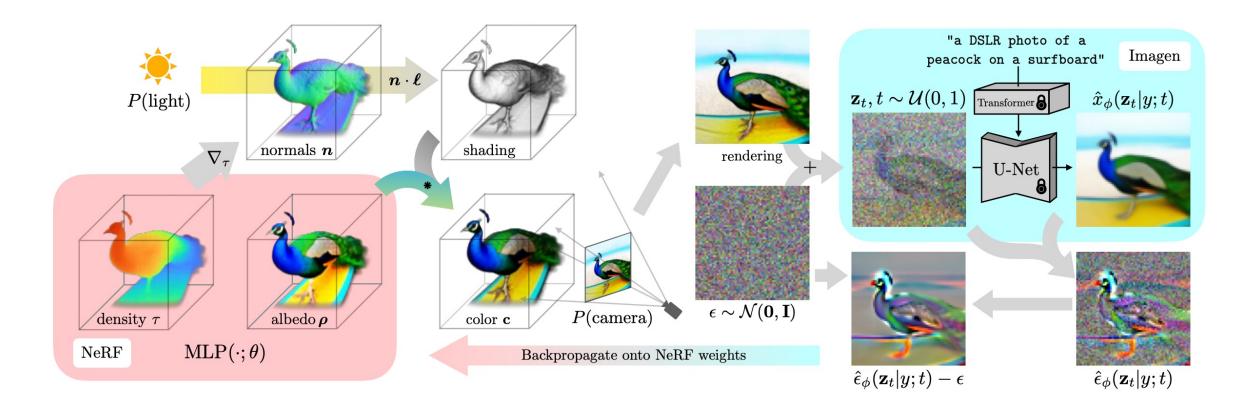
S-LAB FOR ADVANCED INTELLIGENCE

Text to 3D Generation

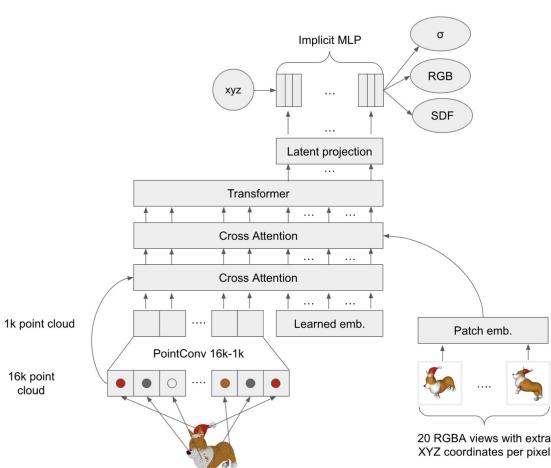
Overview

	Object	Human	Scene
	DreamFusion	AvatarCLIP	Text2Room
Leveraging 2D Prior from pretrained text- 2D models			
Supervised Training from text-3D paired data	Shap-E	Rodin	Text2Light
	A chair that looks An airplane that looks A spaceship like an avocado like a banana A spaceship		A standing of the second se
	i i i i i i i i i i i i i i i i i i i		
	A birthday cupcake A chair that looks like a tree A green boot		

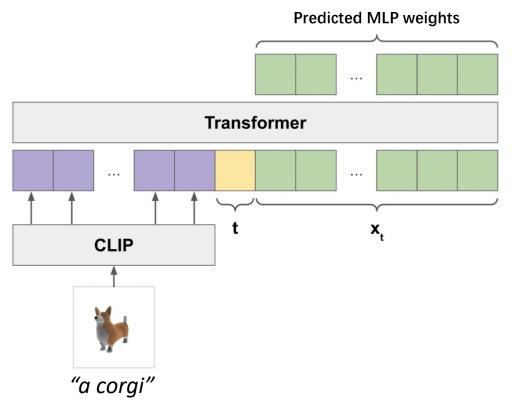
DreamFusion



Shap-E



Step 1: Encode 3D Objects into Latent Space



SINGAPORE

S-LAB

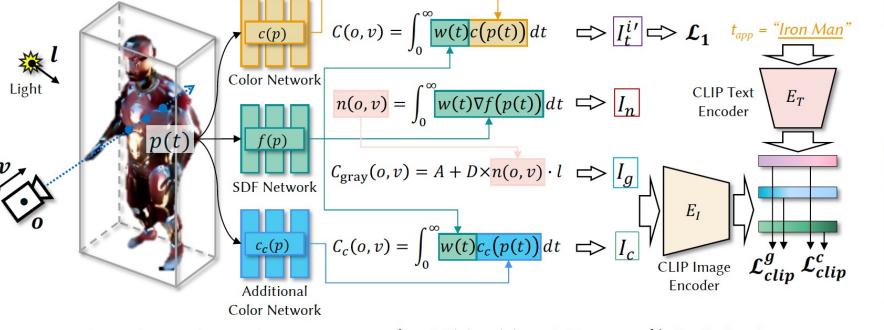
INTELLIGENCE

Step 2: Latent Diffusion

Shap·E: Generating Conditional 3D Implicit Functions

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

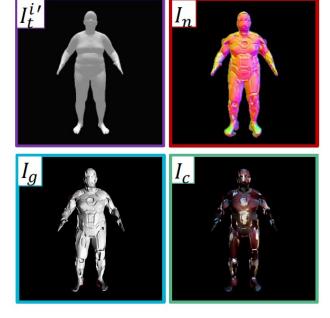
AvatarCLIP



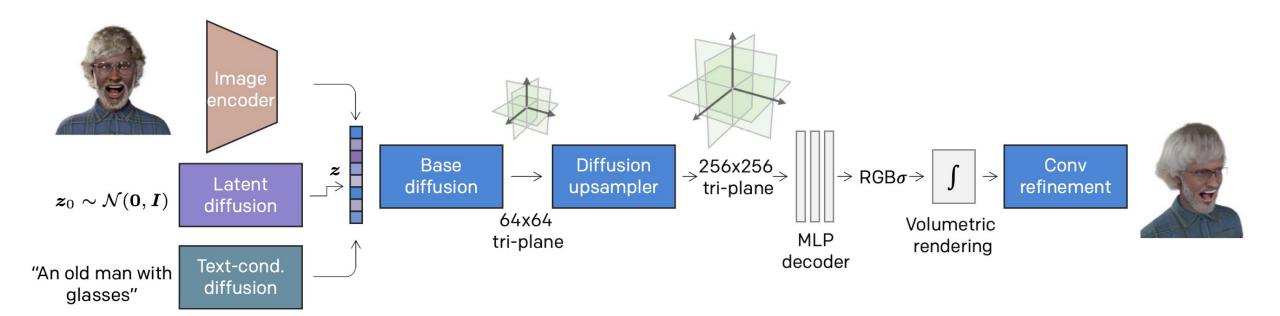
a) Rendering the Implicit 3D Avatar $N' = \{f(p), c(p), c_c(p)\}$

b) Optimization

Examples of Intermediate Results



Rodin

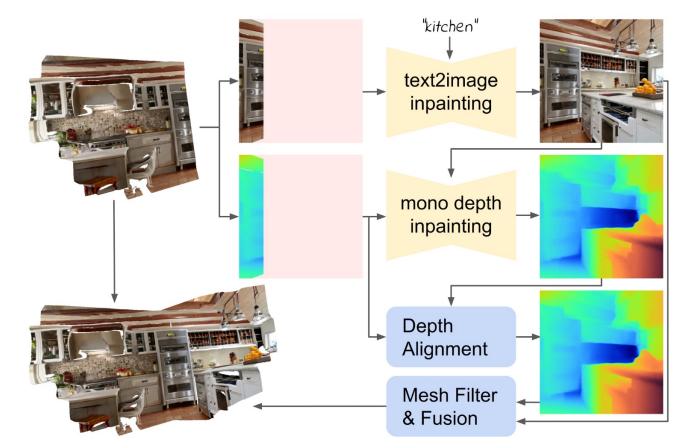


Rodin: A Generative Model for Sculpting 3D Digital Avatars Using Diffusion

Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models

"Editorial Style Photo, Rustic Farmhouse, Living Room, Stone Fireplace, Wood, Leather, Wool"

"A living room with a lit furnace, couch, and cozy curtains, bright lamps that make the room look well-lit."



Text Prompts -> 3D Scenes Optimization based

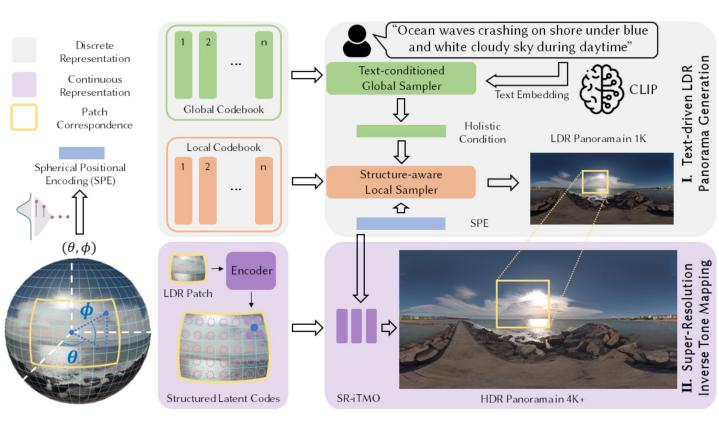
Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions

Edit 3D Scenes via Instructions

Text Prompts + Instruction Tuning -> 3D Scenes Optimization based

Text2Light: Zero-shot Text-driven HDR Panorama Generation

"Sunset by the Ocean"



NANYANG

SINGAPOR

TECHNOLOGICAL UNIVERSITY S-I AB

FOR ADVANCE

INTELLIGENCE

Text Prompts -> Panoramic 3D Scenes Feed Forward Generation

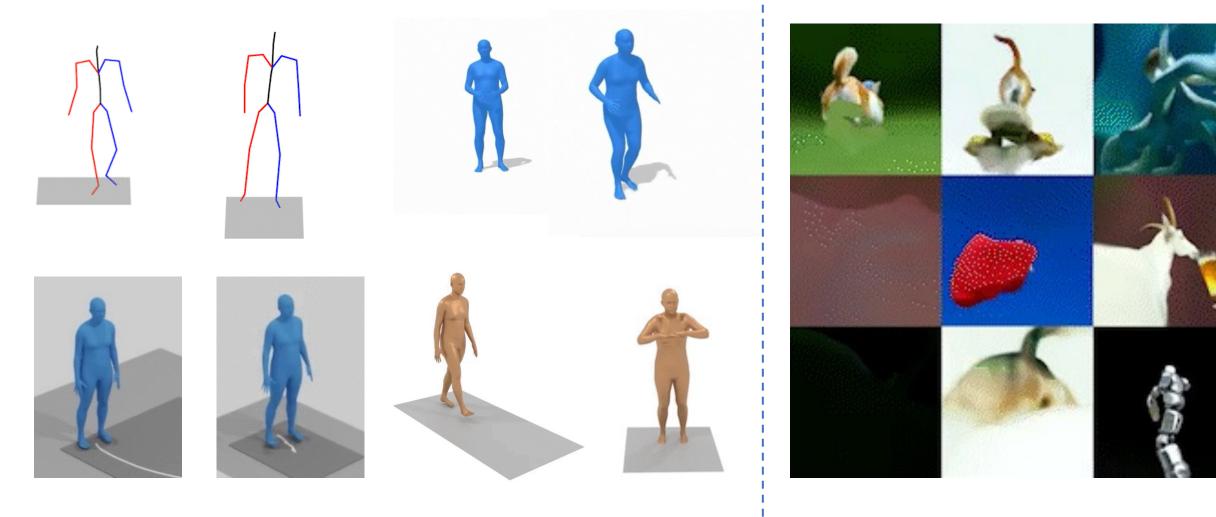
Future work

- Faster Generation:
 - Per-scene-optimization is time consuming.
- Higher Quality:
 - The resolution is limited by the resolution of 2D model.
 - Super high guidance weight leads to over-saturation, over-smoothing results.
- More Efficient 3D Representation
 - Directly learning from 3D data is expensive.

S-LAB FOR ADVANCED INTELLIGENCE

Text to 4D Generation

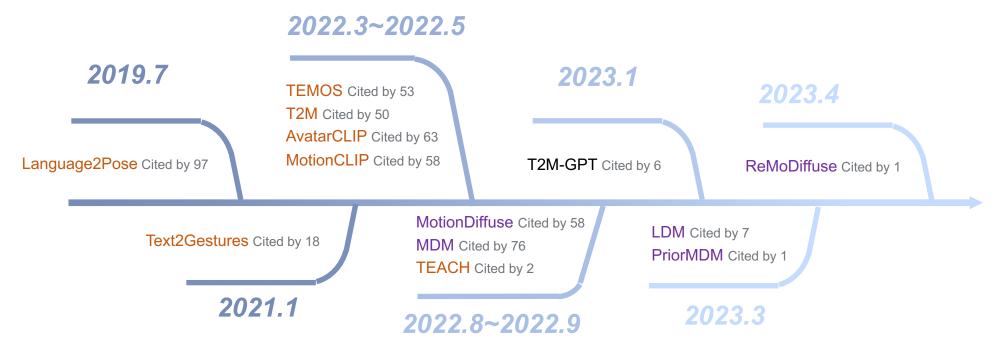
Text-to-4D Generation

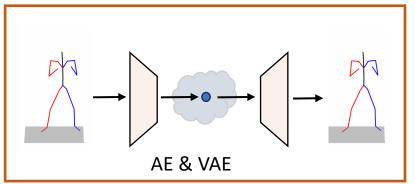


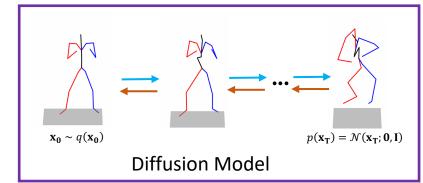
Motion generation

4D scene generation

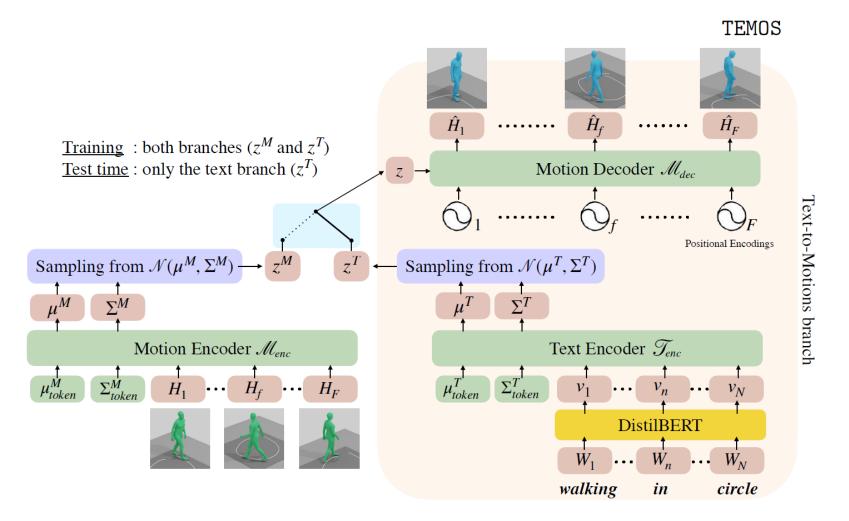
Human Motion Generation







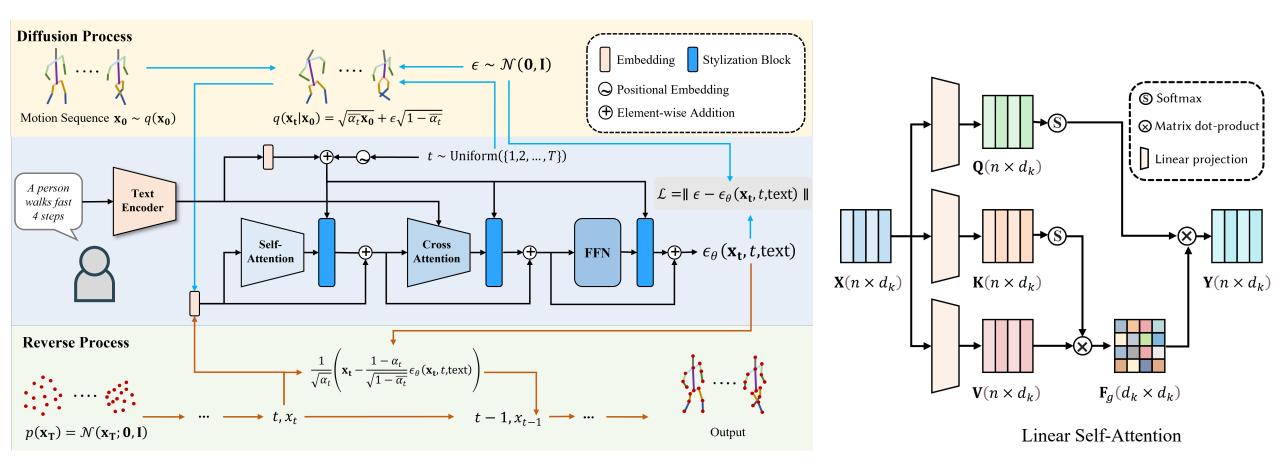
TEMOS



 $\mathcal{L} = L_1 (H, \hat{H}^M) + L_1 (H, \hat{H}^T) + KL(\phi^T, \phi^M) + KL(\phi^M, \phi^T) + KL(\phi^T, \psi) + KL(\phi^M, \psi)$

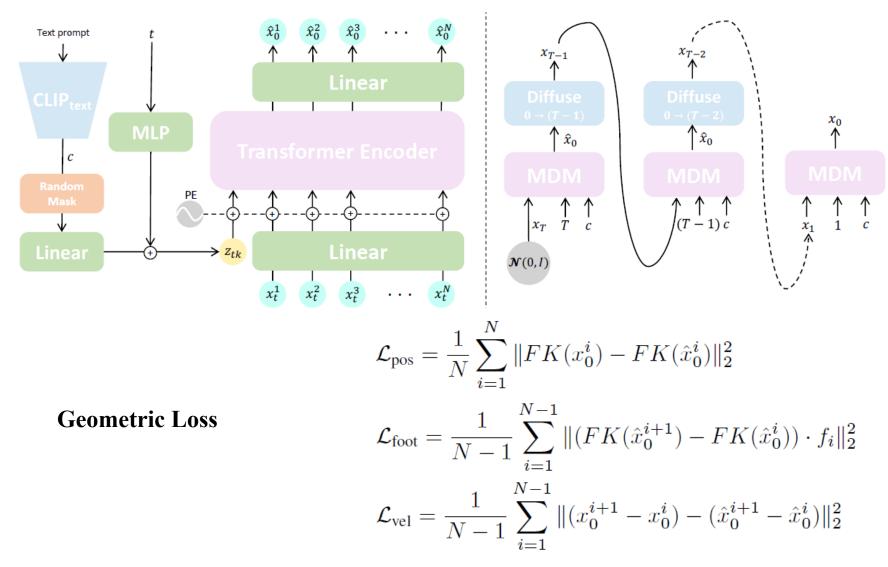
[1] Petrovich et al. Temos: Generating diverse human motions from textual descriptions.

MotionDiffuse



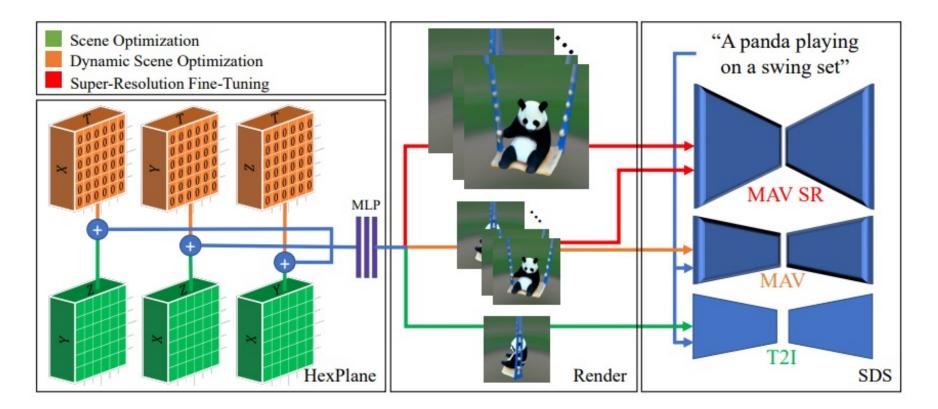
[2] Zhang et al. Motiondiffuse: Text-driven human motion generation with diffusion model.

MDM



[3] Tevet et al. Human motion diffusion model.

4D Scene Generation – MAV3D



4D Scene Representation

$$[P_{xy}^{XYR_1} + P_{zt}^{ZTR_1}; P_{xz}^{XZR_2} + P_{yt}^{YTR_2}; P_{yz}^{YZR_3} + P_{yz}^{XTR_3}]$$

Dynamic Scene Optimization

$$\nabla_{\theta} \mathcal{L}_{SDS-T} = E_{\sigma,\epsilon} \left[w(\sigma)(\hat{\epsilon}(V_{(\bar{\theta},\sigma,\epsilon)}|y,\sigma) - \epsilon) \frac{\partial V_{\theta}}{\partial \theta} \right]$$

[4] Singer et al. Text-To-4D Dynamic Scene Generation.

Future Direction

- 1. More Customized Generation
- 2. More Dynamic Modeling
- 3. More Fine-Grained Alignment

Acknowledgement

Yuming Jiang

Ziqi Huang

Chenyang Si

Fangzhou Hong

Zhaoxi Chen

Mingyuan Zhang

Ziwei Liu

