



Native Multimodal Models: Architecture, Post-Training, and Evaluation

Ziwei Liu 刘子纬 Nanyang Technological University

https://liuziwei7.github.io

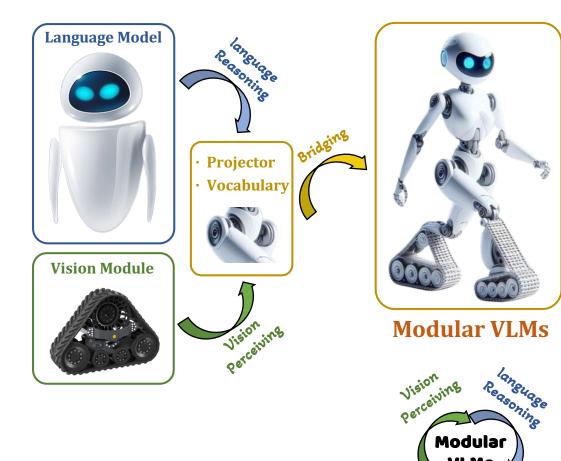


## **Background: Modular Vision-Language Models**

Multi-modality bridging





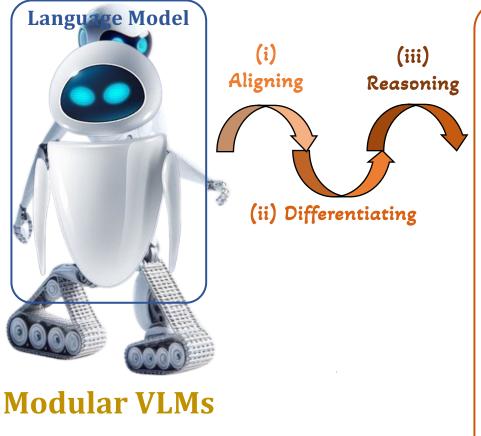


- Dense Visual Encoder
- Well pre-alignment across modules.
- Minimal resource costs for adaptation.
- Strong visual pre-training inductive biases
- Complex infrastructure development and scaling analyses of separate components.
- Discrete Visual Tokenizer
- Efficiently model the unified VLMs.
- Naturally compatible with multiple modalities.
- Discretization results in lossy visual features.
- Perform poorly in fine-grained visual perception.

## **Background: Native Vision-Language Models**









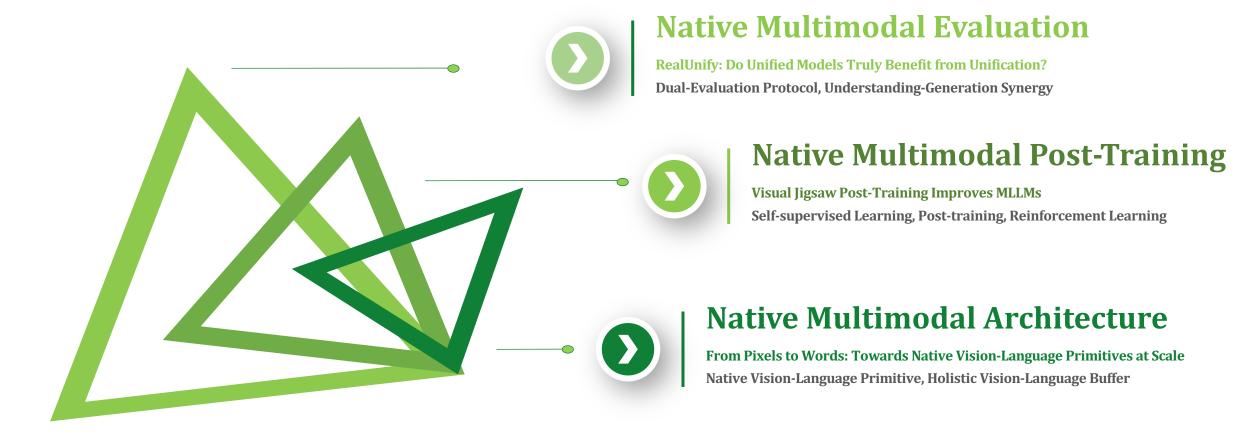
## Thinking:

- Can we remove vision priors from existing VLMs?
- How to transfer an LLM to a native VLM efficiently?
- How to bridge the gap between native and modular VLMs?
- How about mutual synergy on understanding and generation capabilities of existing VLMs?

## **Outline: Native Vision-Language Models**











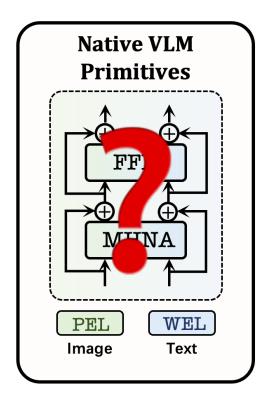
## Native Multimodal Architecture

From Pixels to Words: Towards Native Vision-Language Primitives at Scale

Haiwen Diao, Mingxuan Li, Silei Wu, Linjun Dai, Xiaohua Wang, Hanming Deng, Lewei Lu, Dahua Lin, Ziwei Liu







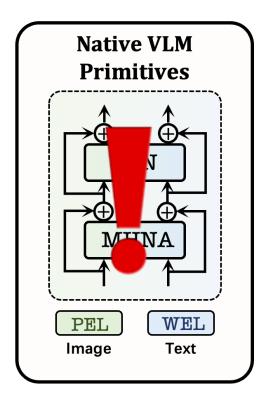
### **Question:**

- What fundamental constraints set native VLMs apart from modular ones, and to what extent can these barriers be overcome?
- How to make research in native VLMs more accessible and democratized, thereby accelerating progress in the field.

These issues prompts us to think about what a native primitive should look like and what characteristics it should have?





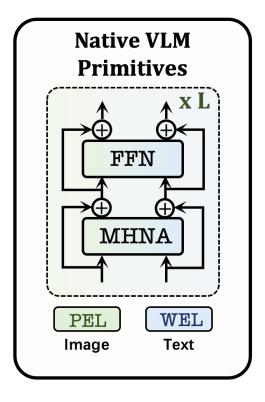


### From first principles, one native VLM primitive should:

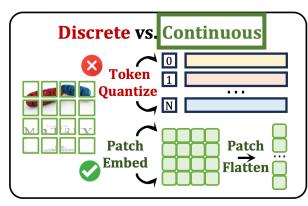
- effectively align pixel and word representations within a shared semantic space;
- seamlessly integrate the strengths of formerly separate vision and language modules;
- inherently embody various cross-modal properties that support unified vision-language encoding, aligning, and reasoning

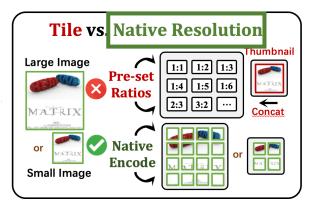


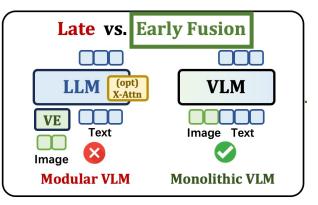




### **Build native VLMs from first principles!!!**



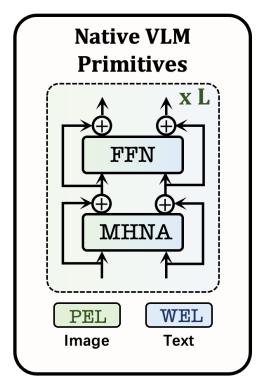


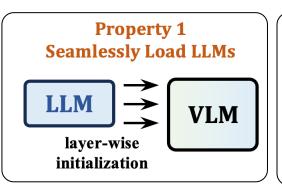


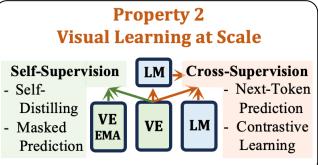


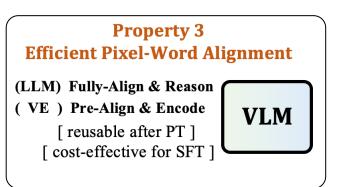


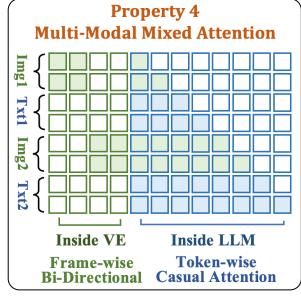
### Build native VLMs by leveraging the strengths of existing VLM designs!!!

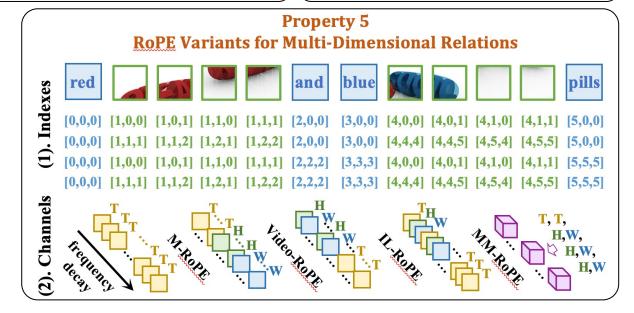








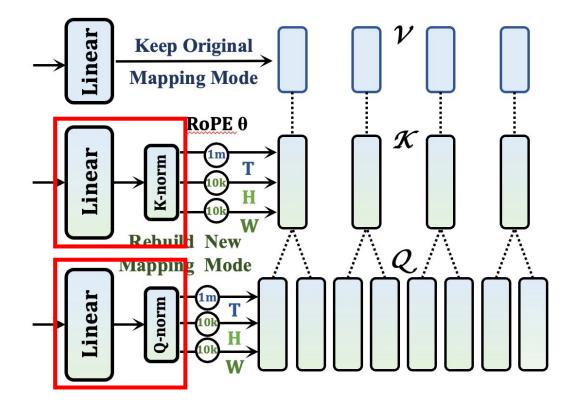






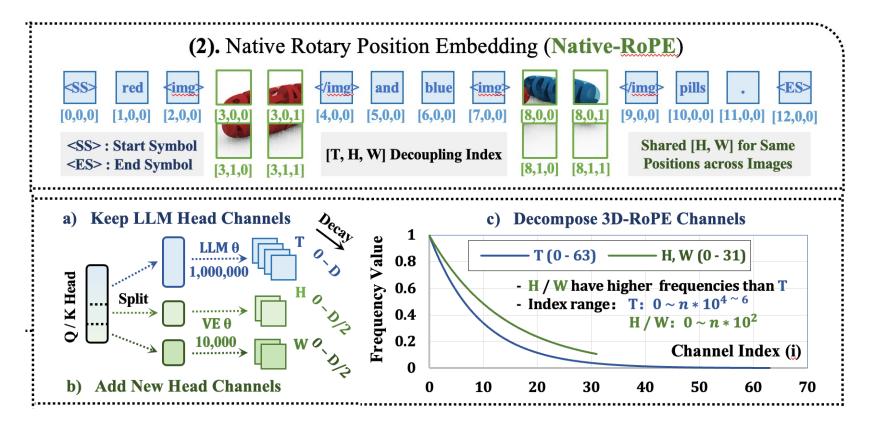


(1). Introduce new FC/Norm into original Q, K for H, W







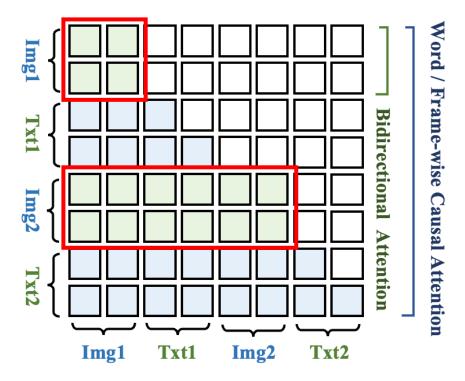


- Native Rotary Position Embeddings (Native-RoPE) eliminates index correlations and decouples channel allocation between H / W and T;
- Native-RoPE with modality-specific frequencies captures local dependencies across H / W / T and long-range relations across T;





(3). Introduce Frame-wise Native Multi-Modal Attention

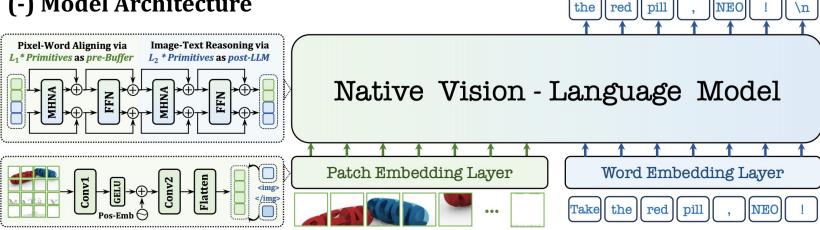


• Native Multi-Modal Attention captures **rich spatial correspondence within images** and **contextual vision-language dependencies**.





### (-) Model Architecture



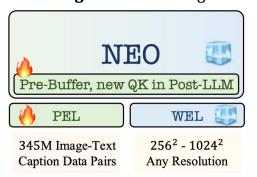
Modality-shared pre-Buffer maps vision and language into a unified representation space.

#### Reusable for extensible ecosystem

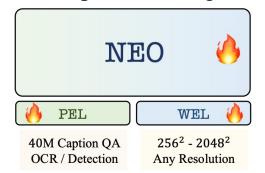
Post-LLM absorbs strong language proficiency and powerful reasoning capabilities of pre-trained LLMs.

### **Training Recipe**

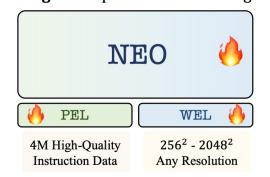
**Stage 1:** Pre-Training



**Stage 2:** Mid-Training



**Stage 3:** Supervised Fine-Tuning



- **End-to-End** Training Procedure
- **Quite Efficient** with Limited Data

With **390M** image-text samples, NEO efficiently **develops visual perception** from scratch while mitigating visionlanguage conflicts inside one model.

## **Main Results**







| Model                      | LLM               | # Data           | MMMU | MMB  | MMVet       | MMStar | SEED-I | POPE | HallB |
|----------------------------|-------------------|------------------|------|------|-------------|--------|--------|------|-------|
| ▼ Modular Vision-L         | anguage Models (2 | (B)              |      |      |             |        |        |      |       |
| Qwen2-VL                   | Qwen2-1.5B        | -/-/-            | 41.1 | 74.9 | 49.5        | 48.0   | -      | _    | 41.7  |
| InternVL2.5                | InternLM2.5-1.8B  | >6B / 100M / 16M | 43.6 | 74.7 | 60.8        | 53.7   | _      | 90.6 | 42.6  |
| Qwen2.5-VL <sup>†</sup>    | Qwen2.5-1.5B      | -/-/-            | 51.2 | 79.1 | 61.8        | 55.9   | _      | _    | 46.3  |
| InternVL3 <sup>†</sup>     | Qwen2.5-1.5B      | >6B / 100M / 22M | 48.6 | 81.1 | 62.2        | 60.7   | _      | 89.6 | 42.5  |
| Encoder-Base               | Qwen3-1.7B        | >6B / 40M / 4M   | 47.1 | 75.8 | 37.4        | 52.7   | 73.6   | 87.0 | 44.4  |
| ▼ Native Vision-Lan        | guage Models (2B) | )                |      |      |             |        |        |      |       |
| Mono-InternVL              | InternLM2-1.8B    | 1.2B / 143M / 7M | 33.7 | 65.5 | 40.1        | -      | 67.4   | -    | 34.8  |
| Mono-InternVL-1.5          | InternLM2-1.8B    | 400M / 150M / 7M | 39.1 | 64.0 | <b>54.0</b> | _      | 66.9   | _    | 32.5  |
| HoVLE                      | InternLM2-1.8B    | 550M / 50M / 7M  | 32.2 | 73.3 | 43.8        | _      | 70.9   | 87.4 | 38.4  |
| OneCAT                     | Qwen2.5-1.5B      | 436M / 70M / 13M | 39.0 | 72.4 | 42.4        | -      | 70.9   | -    | -     |
| NEO                        | Qwen3-1.7B        | 345M / 40M / 4M  | 48.6 | 76.0 | 49.6        | 54.2   | 74.2   | 87.5 | 43.1  |
| <b>▼</b> Modular Vision-L  | anguage Models (8 | <i>BB</i> )      |      |      |             |        |        |      |       |
| Qwen2-VL                   | Qwen2-7B          | -/-/-            | 54.1 | 83   | 62.0        | 60.7   | -      | 88.1 | 50.6  |
| InternVL2.5                | InternLM2.5-7B    | >6B / 50M / 4M   | 56.0 | 84.6 | 62.8        | 64.4   | _      | 90.6 | 50.1  |
| Qwen2.5-VL <sup>†</sup>    | Qwen2.5-7B        | -/-/-            | 55.0 | 83.5 | 67.1        | 63.9   | -      | 86.4 | 52.9  |
| InternVL3 <sup>†</sup>     | Qwen2.5-7B        | >6B / 100M / 22M | 62.7 | 83.4 | 81.3        | 68.2   | _      | 91.1 | 49.9  |
| Encoder-Base               | Qwen3-8B          | >6B / 40M / 4M   | 54.1 | 84   | 60.0        | 63.5   | 76.2   | 87.8 | 51.4  |
| <b>▼</b> Native Vision-Lan | guage Models (8B) |                  |      |      |             |        |        |      |       |
| Fuyu                       | Persimmon-8B      | -/-/-            | 27.9 | 10.7 | 21.4        | _      | 59.3   | 84.0 | -     |
| Chameleon                  | from scratch      | 1.4B / 0M / 1.8M | 25.4 | 31.1 | 8.3         | -      | 30.6   | 19.4 | 17.1  |
| EVE                        | Vicuna-7B         | 33M / 0M / 1.8M  | 32.6 | 52.3 | 25.7        | _      | 64.6   | 85.0 | 26.4  |
| SOLO                       | Mistral-7B        | 44M / 0M / 2M    | _    | 67.7 | 30.4        | -      | 64.4   | 78.6 | _     |
| Emu3                       | from scratch      | -/-/-            | 31.6 | 58.5 | 37.2        | _      | 68.2   | 85.2 | _     |
| EVEv2                      | Qwen2.5-7B        | 77M / 15M / 7M   | 39.3 | 66.3 | 45.0        | _      | 71.4   | 87.6 | _     |
| BREEN                      | Qwen2.5-7B        | 13M / 0M / 4M    | 42.7 | 71.4 | 38.9        | 51.2   | _      | -    | 37.0  |
| VoRA                       | Qwen2.5-7B        | 30M / 0M / 0.6M  | 32.0 | 61.3 | 33.7        | _      | 68.9   | 85.5 | _     |
| SAIL                       | Mistral-7B        | 512M / 86M / 6M  | _    | 70.1 | 46.3        | 53.1   | 72.9   | 85.8 | 54.2  |
| NEO                        | Qwen3-8B          | 345M / 40M / 4M  | 54.6 | 82.1 | 53.6        | 62.4   | 76.3   | 88.4 | 46.4  |

## **Main Results**





| Model                      | Input      | RoPE        | Backbone | AI2D | DocVQA | ChartQA     | InfoVQA | TextVQA | OCRBench |
|----------------------------|------------|-------------|----------|------|--------|-------------|---------|---------|----------|
| ▼ Modular Vision-L         | anguage M  | Todels (2B) |          |      |        |             |         |         |          |
| Qwen2-VL                   | Any Res.   | M-RoPE      | Dense    | 74.7 | 90.1   | 73.5        | 65.5    | 79.7    | 80.9     |
| InternVL2.5                | Tile-wise  | 1D-RoPE     | Dense    | 74.9 | 88.7   | 79.2        | 60.9    | 74.3    | 80.4     |
| Qwen2.5-VL <sup>†</sup>    | Any Res.   | M-RoPE      | Dense    | 81.6 | 93.9   | 84.0        | 77.1    | 79.3    | 79.7     |
| InternVL3 <sup>†</sup>     | Tile-wise  | 1D-RoPE     | Dense    | 78.7 | 88.3   | 80.2        | 66.1    | 77.0    | 83.5     |
| Encoder-Base               | Tile-wise  | 1D-RoPE     | Dense    | 77.4 | 89.9   | 78.4        | 65.9    | 73.3    | 83.5     |
| <b>▼</b> Native Vision-Lan | guage Mod  | dels (2B)   |          |      |        |             |         |         |          |
| Mono-InternVL              | Tile-wise. | 1D-RoPE     | MoE      | 68.6 | 80.0   | 73.7        | 43.0    | 72.6    | 76.7     |
| Mono-InternVL-1.5          | Tile-wise. | 1D-RoPE     | DaC      | 67.4 | 81.7   | 72.2        | 47.9    | 73.7    | 80.1     |
| HoVLE                      | Tile-wise. | 1D-RoPE     | Dense    | 73.0 | 86.1   | 78.6        | 55.7    | 70.9    | 74.0     |
| OneCAT                     | Any Res.   | M-RoPE      | Dense    | 72.4 | 87.1   | 76.2        | 56.3    | 67.0    | _        |
| NEO                        | Any Res.   | Native-RoPE | Dense    | 80.1 | 89.9   | 81.2        | 63.2    | 74.0    | 77.1     |
| <b>▼</b> Modular Vision-L  | anguage M  | (8B) (odels |          |      |        |             |         |         |          |
| Qwen2-VL                   | Any Res.   | M-RoPE      | Dense    | 83.0 | 94.5   | 83          | 76.5    | 84.3    | 86.6     |
| InternVL2.5                | Tile-wise  | 1D-RoPE     | Dense    | 84.5 | 93.0   | 84.8        | 77.6    | 79.1    | 82.2     |
| Qwen2.5-VL <sup>†</sup>    | Any Res.   | M-RoPE      | Dense    | 83.9 | 95.7   | 87.3        | 82.6    | 84.9    | 86.4     |
| InternVL3 <sup>†</sup>     | Tile-wise  | 1D-RoPE     | Dense    | 85.2 | 92.7   | 86.6        | 76.8    | 80.2    | 88       |
| Encoder-Base               | Tile-wise  | 1D-RoPE     | Dense    | 82.9 | 92.1   | 83.5        | 75      | 77.1    | 85.3     |
| ▼ Native Vision-Lan        | guage Mod  | dels (8B)   |          |      |        |             |         |         |          |
| Fuyu                       | Any Res.   | 1D-RoPE     | Dense    | 64.5 | _      | _           | _       | _       | 36.6     |
| Chameleon                  | Fix Res.   | 1D-RoPE     | Dense    | 46.0 | 1.5    | 2.9         | 5.0     | 4.8     | 0.7      |
| EVE                        | Any Rat.   | 1D-RoPE     | Dense    | 61.0 | 53.0   | 59.1        | 25.0    | 56.8    | 39.8     |
| SOLO                       | Any Res.   | 1D-RoPE     | Dense    | 61.4 | _      | _           | _       | _       | 12.6     |
| Emu3                       | Fix Res.   | 1D-RoPE     | Dense    | 70   | 76.3   | 68.6        | 43.8    | 64.7    | 68.7     |
| EVEv2                      | Any Rat.   | 1D-RoPE     | DaC      | 74.8 | _      | 73.9        | _       | 71.1    | 70.2     |
| BREEN                      | Any Res.   | 1D-RoPE     | MoE      | 76.4 | _      | -           | _       | 65.7    | -        |
| VoRA                       | Any Res.   | 1D-RoPE     | Dense    | 61.1 | _      | _           | _       | 58.7    | _        |
| SAIL                       | Any Res.   | M-RoPE      | Dense    | 76.7 | _      | -           | _       | 77.1    | 78.3     |
| NEO                        | Any Res.   | Native-RoPE | Dense    | 83.1 | 88.6   | <b>82.1</b> | 60.9    | 75.0    | 77.7     |

- -- With quite **limited** pre-training and supervised fine-tuning data and
- -- Without reinforcement learning (RL)
- Approaches the performance of top-tier modular VLMs, e.g., Qwen2 / 2.5-VL, InternVL2.5 / 3.
- Delivers substantial gains on diverse visual-centric benchmarks over the best competitors, from EVE series to SAIL.





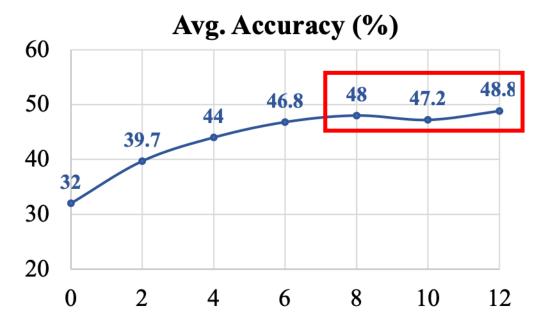


Figure 5: Configurations of pre-Buffer.

Here **8-12** primitive layers for pre-Buffer is a good trade-off for pre-alignment.





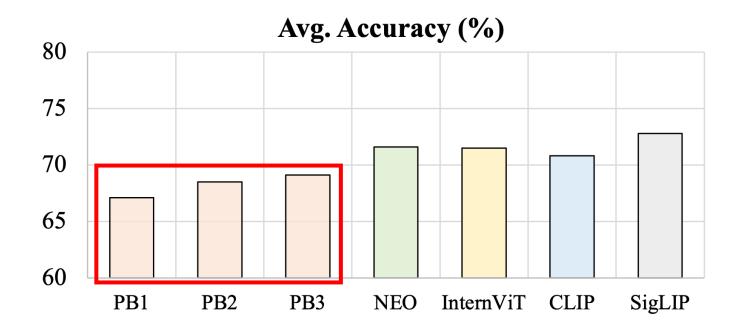
Table 3: Configurations of attention and RoPE. MMS, CQA, IVQA, and OCRB denote MMStar, ChartQA, InfoVQA, and OCRBench. \* indicates that the base RoPE frequencies for height and width are set to 1M. To ensure fairness, we add new head dimensions of equal size across all models.

| Model | Model Attention RoPE |              | MMMU | MMB                | MMS         | SEED-I      | AI2D        | CQA  | IVQA | TVQA        | OCRB | POPE | Avg. |
|-------|----------------------|--------------|------|--------------------|-------------|-------------|-------------|------|------|-------------|------|------|------|
| A     | Causal               | 1D-RoPE      | 40.2 | 48.6               | 36.1        | 55.3        | 63.6        | 16.1 | 22.5 | 16.2        | 13.9 | 78.6 | 39.1 |
| В     | Mixed                | 1D-RoPE      | 40.8 | 48.8               | 36.4        | 57.3        | 63.7        | 16.0 | 21.9 | 17.4        | 16.0 | 79.2 | 39.8 |
| C     | Mixed                | IL-RoPE      | 40.0 | 47.3               | 36.3        | 57.6        | 62.0        | 18.8 | 23.4 | 17.9        | 13.2 | 78.8 | 39.5 |
| D     | Mixed                | M-RoPE       | 40.3 | 49.6               | 37.2        | 57.8        | 64.2        | 23.7 | 25.2 | 20.4        | 18.8 | 79.3 | 41.7 |
| E     | Mixed                | MM-RoPE      | 40.5 | 50.8               | 37.6        | 58.2        | <b>65.8</b> | 25.7 | 26.3 | 22.1        | 18.2 | 78.8 | 42.4 |
| F     | Mixed                | Video-RoPE   | 40.6 | 51.3               | <b>37.8</b> | <b>58.8</b> | 64.3        | 27.4 | 26.1 | 23.7        | 21.3 | 81.0 | 43.2 |
| G     | Causal               | Native-RoPE  | 40.2 | $\bar{49}.\bar{2}$ | 36.3        | 57.1        | 63.7        | 19.2 | 23.5 | 19.5        | 16.7 | 77.8 | 40.3 |
| H     | Mixed                | Native-RoPE  | 40.7 | 51.9               | 38.2        | <b>58.9</b> | 65.8        | 30.6 | 26.9 | <b>24.1</b> | 23.2 | 80.0 | 44.0 |
| I     | Mixed                | Native-RoPE∗ | 40.4 | 50.4               | 36.9        | 57.0        | 64.1        | 25.6 | 25.2 | 21.7        | 20.1 | 78.7 | 42.0 |

- Modality-specific RoPE frequency does count!
- RoPE indexes allocation for H, W, T does count!
- Mixed Multi-Modality Attention Mechanism does count!







PB 1-3 denotes the Pre-Buffer after stage 1-3.

PB3 shows only an average gap of 2.5 / 2.4 / 1.7 / 3.7% over NEO / InternViT / CLIP / SigLIP, reducing training costs of building native VLMs for subsequent research.





# **Native Multimodal Post-Training**

## Visual Jigsaw Post-Training Improves MLLMs

Penghao Wu, Yushan Zhang, Haiwen Diao, Bo Li, Lewei Lu, Ziwei Liu

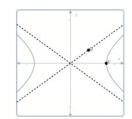


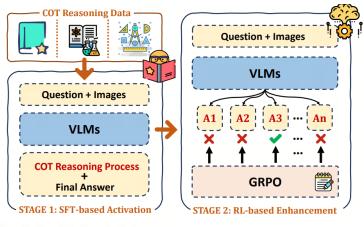


## RL-based Post-training for MLLMs

- Text-centric reasoning on math/science/coding problems
- Specific vision tasks (grounding, detection, segmentation, counting)
- Tool-using (thinking with images)

Most works focused on enhancing **text-centric reasoning** where **visual inputs work only as context** 





Question: Given the hyperbola shown in the image, can we determine the equation of the hyperbola by analyzing the relationship between the slope of the asymptote and the distance from the center to the vertex?

Choices: A. Yes B. No

#### Reason-RFT:

<answer>A</answer>

[1] Tan, Huajie, et al. "Reason-rft: Reinforcement fine-tuning for visual reasoning." arXiv preprint arXiv:2503.20752 (2025).



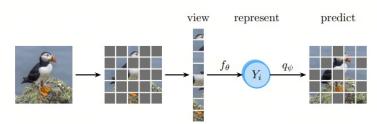


## How to improve intrinsic vision-centric capabilities of MLLMs?

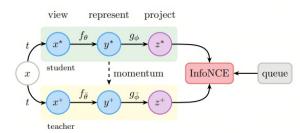
- Methods like ROSS [1] shows dense image reconstruction helps understanding, but requiring additional vision generation modules and designs. Do we need dense pixel-level reconstruction?
- Unified Multimodal Models (UMMs) only shows understanding benefits visual generation

## How do we learn good vision representation?

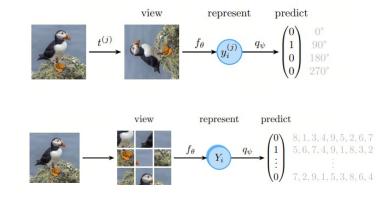
### **Self-supervised learning!**



Reconstruction-based methods



Discriminative/contrastive methods



Other pretext tasks like rotation prediction and **jigsaw-style** tasks

Easier version of reconstruction Suitable for MLLMs (compatible with text-output MLLM)

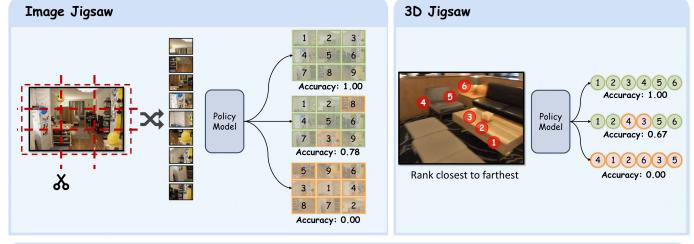
<sup>[1]</sup> Wang, Haochen, et al. "Reconstructive visual instruction tuning." arXiv preprint arXiv:2410.09575 (2024).

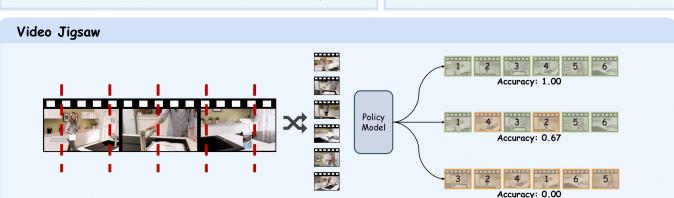
<sup>[2]</sup> Uelwer, Tobias, et al. "A survey on self-supervised representation learning." arXiv preprint arXiv:2308.11455 (2023).

## **Visual Jigsaw**









Visual Data → Partitioning → Shuffling

Model reconstruct the data by predicting the indices in correct order

Optimize using the GRPO algorithm

## **Image Jigsaw**





Image  $\rightarrow$  3 \* 3 image patches

Mentally reconstruct the image and output the patch indices in the correct raster scan order.



## **Image Jigsaw**





|                    | Fine-grained Perception & Understanding |                       |         |             |       |               |                |          |       |             | Mono) | Compositional Und |              |  |
|--------------------|-----------------------------------------|-----------------------|---------|-------------|-------|---------------|----------------|----------|-------|-------------|-------|-------------------|--------------|--|
| Model              | MMVP                                    | MMStar (fine-grained) | MMBench | HR-Bench-8K | *^    | MME-RealWorld | LISA-Grounding | OVD-Eval | VSR   | OmniSpatial | DA-2K | Winoground        | SugarCrepe++ |  |
| 1.20 402           | test                                    | fine                  | en_dev  | test        | test  | lite          | test           | test     | test  | test        | val   | g-acc             | test         |  |
| ThinkLite-VL       | 55.33                                   | 59.95                 | 84.19   | 68.12       | 76.96 | 46.17         | 73.70          | 35.78    | 78.09 | 42.60       | 58.46 | 35.25             | 61.49        |  |
| VL-Cogito          | 55.33                                   | 56.64                 | 82.98   | 69.62       | 79.58 | 47.63         | 72.26          | 35.78    | 79.82 | 44.29       | 56.43 | 38.25             | 63.59        |  |
| LLaVA-Critic-R1    | 53.33                                   | 57.80                 | 83.16   | 67.50       | 78.01 | 45.18         | 68.52          | 35.28    | 78.50 | 42.73       | 53.82 | 34.75             | 61.93        |  |
| Qwen2.5-VL-7B      | 54.66                                   | 59.75                 | 83.33   | 67.38       | 76.96 | 43.41         | 71.89          | 35.07    | 77.68 | 42.66       | 54.45 | 37.00             | 61.59        |  |
| Image Jigsaw (SFT) | 56.00                                   | 60.94                 | 83.67   | 69.75       | 80.10 | 43.88         | 66.59          | 34.35    | 80.68 | 43.55       | 61.46 | 38.75             | 62.03        |  |
| Image Jigsaw       | 60.66                                   | 65.81                 | 84.45   | 71.13       | 80.63 | 45.96         | 74.54          | 36.49    | 80.36 | 44.49       | 60.35 | 39.00             | 63.02        |  |
| (Gain)             | +6.00                                   | +6.06                 | +1.12   | +3.75       | +3.66 | +2.55         | +2.65          | +1.42    | +2.68 | +1.83       | +5.90 | +2.00             | +1.43        |  |

### Enhance vision-centric capabilities:

- Fine-grained perception & understanding
- Monocular spatial understanding
- Compositional visual understanding

## Video Jigsaw







Video → 6 video clips

Mentally reconstruct the video and output the clip indices in the correct chronological order.

## Video Jigsaw





| Model         | Frames | AoTBench | Vinoground | TOMATO | FAVOR-Bench | TUNA-Bench | VideoMME | TempCompass | TVBench | MotionBench | LVBench | VSI-Bench | Video-TT | CVBench |
|---------------|--------|----------|------------|--------|-------------|------------|----------|-------------|---------|-------------|---------|-----------|----------|---------|
|               |        | vqa      | group      | test   | test        | test       | wo subs  | mc          | test    | val         | test    | test      | mcq      | test    |
| Video-R1      | 16     | 45.06    | 9.40       | 27.29  | 49.47       | 53.00      | 56.62    | 70.19       | 51.80   | 55.82       | 34.53   | 34.34     | 42.95    | 47.50   |
| Video-R1      | 32     | 47.53    | 10.20      | 27.29  | 49.90       | 54.26      | 59.88    | 71.77       | 53.54   | 56.12       | 38.61   | 35.11     | 42.63    | 48.10   |
| Video-R1      | 64     | 48.68    | 10.60      | 27.36  | 50.51       | 54.33      | 60.85    | 72.59       | 53.43   | 56.09       | 38.80   | 36.61     | 42.74    | 48.69   |
| Qwen2.5-VL-7B | 16     | 45.52    | 12.60      | 25.87  | 48.54       | 53.14      | 57.44    | 71.77       | 49.94   | 55.56       | 33.51   | 32.79     | 38.39    | 47.70   |
| Qwen2.5-VL-7B | 32     | 49.48    | 18.20      | 26.34  | 49.34       | 54.88      | 60.70    | 72.59       | 51.96   | 56.47       | 39.19   | 35.34     | 41.57    | 49.60   |
| Qwen2.5-VL-7B | 64     | 52.41    | 21.80      | 26.35  | 50.86       | 55.79      | 63.44    | 72.84       | 53.74   | 56.29       | 40.35   | 37.74     | 42.25    | 51.50   |
| Video Jigsaw  | 16     | 51.67    | 15.20      | 27.56  | 49.69       | 55.10      | 58.07    | 73.10       | 51.33   | 56.87       | 36.41   | 35.39     | 40.19    | 49.80   |
| (Gain)        |        | +6.15    | +2.60      | +1.69  | +1.15       | +1.96      | +0.63    | +1.33       | +1.39   | +1.31       | +2.90   | +2.60     | +1.80    | +2.10   |
| Video Jigsaw  | 32     | 55.00    | 21.40      | 28.03  | 50.56       | 56.49      | 62.37    | 73.60       | 53.31   | 57.99       | 39.70   | 38.47     | 43.27    | 51.60   |
| (Gain)        |        | +5.52    | +3.20      | +1.69  | +1.22       | +1.61      | +1.67    | +1.01       | +1.35   | +1.52       | +0.51   | +3.13     | +1.70    | +2.00   |
| Video Jigsaw  | 64     | 57.64    | 25.20      | 28.30  | 52.27       | 56.63      | 64.74    | 73.60       | 54.18   | 57.91       | 41.83   | 40.40     | 44.11    | 54.50   |
| (Gain)        |        | +5.23    | +3.40      | +1.95  | +1.41       | +0.84      | +1.30    | +0.76       | +0.44   | +1.62       | +1.48   | +2.66     | +1.86    | +3.00   |

- Enhances general video perception and comprehension
- Large gain on temporal-centric understanding and reasoning about temporal directionality (e.g. AoTBench)
- Improved cross-video understanding and reasoning (CVBench)

## Video Jigsaw





| Model               | AoTBench | Vinoground | TOMATO | FAVOR-Bench | TUNA-Bench | VideoMME | TempCompass | TVBench | MotionBench | LVBench | VSI-Bench | Video-TT | CVBench |
|---------------------|----------|------------|--------|-------------|------------|----------|-------------|---------|-------------|---------|-----------|----------|---------|
|                     | vqa      | group      | test   | test        | test       | wo subs  | mc          | test    | val         | test    | test      | mcq      | test    |
| MiMo-VL-7B-SFT-2508 | 65.00    | 15.60      | 34.16  | 53.33       | 58.80      | 68.07    | 76.13       | 56.48   | 57.86       | 40.86   | 41.59     | 46.00    | 63.00   |
| Video Jigsaw        | 69.77    | 21.60      | 37.33  | 54.31       | 62.29      | 68.55    | 77.21       | 61.50   | 59.73       | 42.93   | 44.27     | 48.50    | 65.20   |
| (Gain)              | +4.77    | +6.00      | +3.17  | +0.98       | +3.49      | +0.48    | +1.08       | +5.02   | +1.87       | +2.07   | +2.68     | +2.50    | +2.20   |

Consistent improvement on stronger base model: MiMo-VL-7B-SFT-2508

## 3D Jigsaw

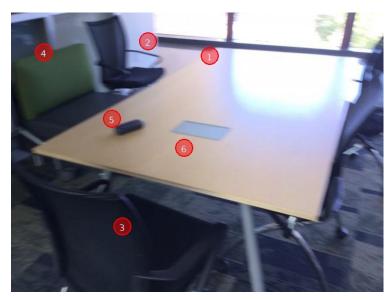




RGB-D  $\rightarrow$  6 points

Order the points from closest to farthest relative to the camera.







## 3D Jigsaw





| Model               | SAT-Real        | 3DSRBench          | ViewSpatial    | All-Angles     | OmniSpatial    | VSI-Bench      | SPARBench      | DA-2K           |
|---------------------|-----------------|--------------------|----------------|----------------|----------------|----------------|----------------|-----------------|
| 1110401             | test            | test               | test           | test           | test           | test           | tiny           | test            |
| Qwen2.5-VL-7B       | 48.66           | 57.42              | 36.52          | 47.56          | 42.66          | 37.74          | 35.75          | 54.45           |
| 3D Jigsaw<br>(Gain) | 64.00<br>+15.34 | <b>58.13</b> +0.71 | 38.62<br>+2.10 | 49.06<br>+1.50 | 45.99<br>+3.33 | 40.64<br>+2.90 | 38.31<br>+2.56 | 71.56<br>+17.11 |

- Largest gains on directly related task DA-2K
- Consistent improvements on a wide range of other tasks (single-view, multi-views, egocentric video)





- RL outperforms SFT
- The difficulty of the jigsaw tasks matters
- Apply jigsaw task training before text-centric/long CoT reasoning training

### **Future Works**

- Different 3D jigsaw designs on base models with stronger 3D capabilities
- Different jigsaw configurations and combinations
- Other vision-centric self- and weakly-supervised tasks





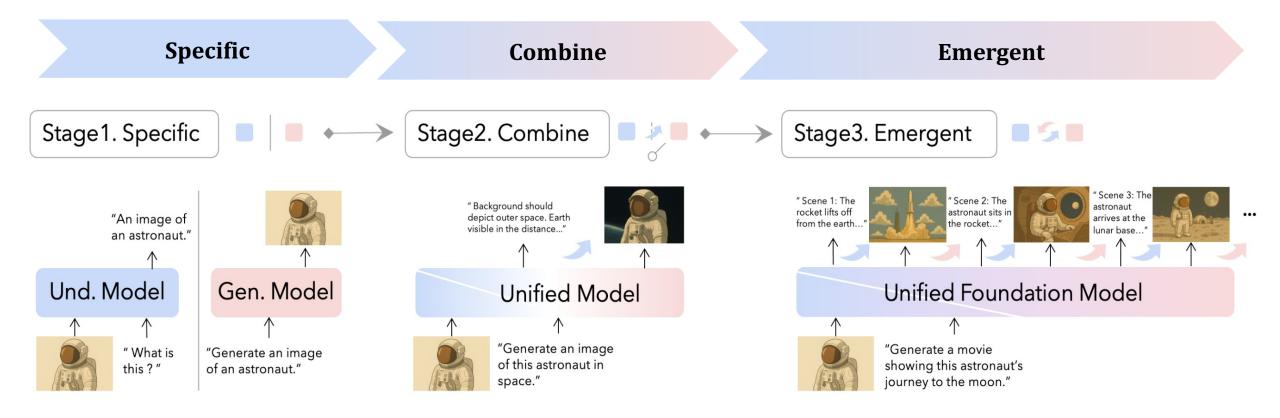
## **Native Multimodal Evaluation**

## RealUnify: Do Unified Models Truly Benefit from Unification?

Yang Shi, Yuhao Dong, Yue Ding, Yuran Wang, Xuanyu Zhu, Sheng Zhou, Wenting Liu, Haochen Tian, Rundong Wang, Huanqian Wang, Zuyan Liu, Bohan Zeng, Ruizhe Chen, Qixun Wang, Zhuoran Zhang, Xinlong Chen, Chengzhuo Tong, Bozhou Li, Chaoyou Fu, Qiang Liu, Haotian Wang, Wenjing Yang, Yuanxing Zhang, Pengfei Wan, Yi-Fan Zhang, Ziwei Liu







**Easy to evaluate with current benchmarks** 

Lack of customized benchmarks





#### **Previous Benchmarks**

## Understanding

### Generation



#### **MMBench**

**Stage 1: Direct** 

GenEval



Which one is the correct caption of this image?

a photo of a red cake and a purple chair.



Add a mouse on the floor in front of the cat.



#### **LogicVista**

Does this artwork

belong to the type

of mythological?

**Stage 2: Reasoning** 

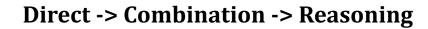
**MME-Unify** 

**WISE** 



Which one is the correct caption of this image?

Einstein's favorite musical instrument



#### **Customized Unified Benchmark**

### Unified Evaluation

#### **Stage 3: Synergetic Evaluation**



**GEU Mental Re-**

construction

Hint: Restore the image that has been shuffled by patches

Question:

What are the colors of the four chairs in the whole picture from left to right?

Answer: White, Yellow, Blue, Red

#### Prompt:

There are three cats in a row. The black cat is not on the far right, the white cat is to the left of the black cat, and the gray cat is to the

right of the white cat.

Hint: Refine it to ensure the generated image fully aligns with the given conditions.

Logica Reasoning



**True Unification** 

## Task Taxonomy





### **Understanding -> Generation (UEG)**

#### UNDERSTANDING ENHANCES GENERATION (UEG)

#### World Knowledge



Prompt: The largest feline animal in terms of body size.



#### Question:

1. Does this image show a Tiger?

2. Can you identify a Tiger in this image?

#### Mathematical Reasoning



Prompt: A table with some books, which could be arranged into four stacks with 2 books each. Draw all the books on the table.



#### Question:

1. Are there a total of exactly 8 books on Evaluation the table?

#### Scientific Reasoning



Prompt: ,A litmus solution is exposed to a carbon dioxide (CO2) environment.

#### Question:



Is the solution red?

2. Is the solution blue? X

3. Is the solution purple? X

#### Commonsense Reasoning



Prompt: A slice of butter melting unevenly on hot toast.

#### Question:



- 1. Is there a slice of butter present?
- 2. Is the butter placed on a toast?
- Evaluation 3. Is the butter shown melting unevenly rather than in a uniform manner?

#### Logical Reasoning



Prompt: Three birds, one blue and one gray, are lined up on a telephone pole. The blue bird is not in the middle, and the adjacent birds are different colors.



#### Question:

1. Is the blue bird not in the middle?

#### Evaluation 2. Are the adjacent different colors?

#### Code To Image



Prompt: Code: num = int(input()) if num > 0: print("A pair of shoes") elif num < 0: print("A pink pig rolling in the mud.")
else: print("A fluffy sheep with a bell around its neck.")

Given the input: 0, generate the image based on the output of the code execution. Question:



1. Does the image show a fluffy sheep with

#### Evaluation a bell around its neck?

Refine it to ensure the generated image fully aligns with the given conditions.

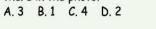
### **Generation -> Understanding**

(GEU) NERATION ENHANCES UNDERSTANDING (GEU)

#### Mental Reconstruction



Question: Including the photographer, how many cars are there in the photo?







Answer: A

#### Mental Tracking



Question: Turn all black segments into orange, then turn all yellow into orange, then turn all green into red. Which digits are formed by the orange seaments? A. "1,7" B. "4,7". C. "4,6". D. "7,6"



Hint: Apply the transformations to the contents of the image.



Answer: D

#### Attentional Focusing



Question: What is the text written on the blue golf ball holder?

- A. MUTUAL INSURANC
- B. NEW YORK MUTUAL
- C. NEW MEXICO MUTUAL
- D. NEW MEXICO INSURANCE



Hint: Highlight the regions of the image that are relevant to the question.



Answer: C

#### Cognitive Navigation



Question: On the shortest path from Penguin to Polar, which of the following animals can we see??



- A. Rabbit B. Monkey C. Aviary D. Lion
- 2 User

Hint: Mark the path(s) in the image that are relevant to the question.



Answer: B

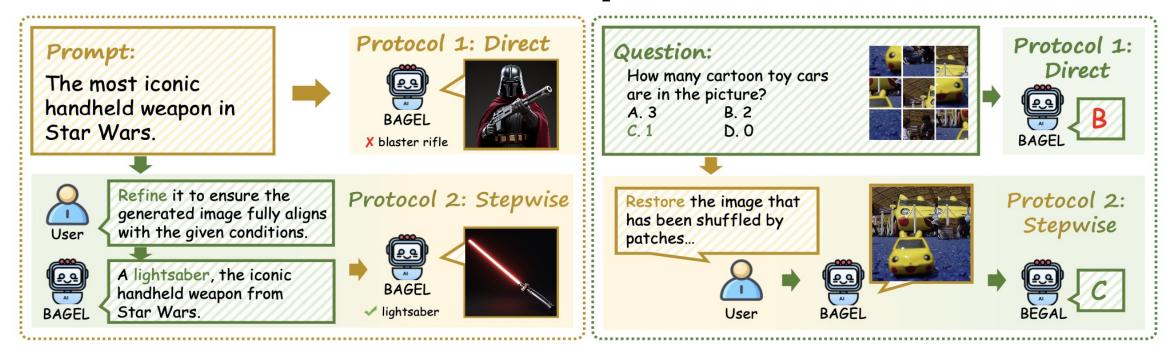


### **How to Evaluate**





### **Direct -> Step-wise**



Direct: Whether the model can leverage Step-Wise: Decouple generation & understanding generation & understanding synergistically for better assignment

## **Evaluate with RealUnify**





| Model       |         | U       | nderstand | ing Enhan | ces Gener | ation    |                | (       | Generation | Enhance | s Understa | nding       | Total       |
|-------------|---------|---------|-----------|-----------|-----------|----------|----------------|---------|------------|---------|------------|-------------|-------------|
| Model       | WK      | CR      | MR-I      | LR        | SR        | C2I      | Avg            | MR-II   | MT         | AF      | CN         | Avg         | 10141       |
|             |         |         |           |           |           | Prop     | rietary Models |         |            |         |            |             |             |
| Nano Banana | 89 / -  | 86 / -  | 34 /-     | 65 / -    | 48 /-     | 56 /-    | 63.0 / -       | 34 / -  | 27 / -     | 36/-    | 30 / -     | 31.8 / -    | 50.5 / -    |
|             |         |         |           |           | (         | Open-Sou | rce Unified M  | odels   |            |         |            |             |             |
| MIO         | 24 / 35 | 26 / 33 | 18 / 13   | 9 / 10    | 10 / 11   | 0/8      | 14.5 / 18.3    | 26 / 23 | 19 / 18    | 35 / 19 | 23 / 21    | 25.8 / 20.3 | 19.0 / 19.1 |
| Janus-Pro   | 25 / 26 | 77 / 71 | 16/7      | 13 / 17   | 16 / 20   | 3 / 10   | 25.0 / 25.2    | 21 / -  | 23 / -     | 28 / -  | 29 / -     | 25.3 / -    | 25.1 / -    |
| ILLUME+     | 44 / 52 | 62 / 62 | 22 / 22   | 23 / 25   | 26 / 26   | 1/7      | 29.7 / 32.3    | 27 / 27 | 19 / 20    | 35 / 38 | 30 / 25    | 27.8 / 27.5 | 28.9 / 30.4 |
| Show-o2     | 30 / 42 | 56 / 50 | 25 / 25   | 21 / 21   | 18 / 20   | 18 / 19  | 28.0 / 29.5    | 36 / -  | 28 / -     | 36 / -  | 21 / -     | 30.3 / -    | 28.9 / -    |
| OmniGen2    | 36 / 55 | 61 / 60 | 21 / 26   | 29 / 28   | 16 / 20   | 19/6     | 30.3 / 32.5    | 30 / 42 | 21 / 24    | 51/38   | 28 / 19    | 32.5 / 30.8 | 31.2 / 31.8 |
| UniPic2     | 61 / 62 | 73 / 72 | 31 / 30   | 28 / 38   | 25 / 26   | 7 / 15   | 37.5 / 40.5    | 26 / 28 | 20 / 24    | 27 / 27 | 23 / 16    | 24.0 / 23.8 | 32.1 / 33.8 |
| UniWorld-V1 | 51 / 56 | 64 / 59 | 26 / 26   | 33 / 37   | 21 / 24   | 15/9     | 35.0 / 35.2    | 29 / 33 | 19 / 25    | 57 / 36 | 24 / 20    | 32.3 / 28.5 | 33.9 / 32.5 |
| Ovis-U1     | 37 / 59 | 72 / 71 | 28 / 30   | 23 / 34   | 15 / 17   | 12 / 25  | 31.2 / 39.3    | 32 / 38 | 28 / 25    | 60 / 31 | 36 / 24    | 39.0 / 29.5 | 34.3 / 35.4 |
| BLIP3-o     | 57 / 62 | 71 / 74 | 21 / 24   | 19 / 25   | 28 / 22   | 2/9      | 33.0 / 36.0    | 36 / -  | 25 / -     | 57 / -  | 32 / -     | 37.5 / -    | 34.8 / -    |
| OneCAT      | 61 / 64 | 70 / 65 | 32 / 20   | 29 / 27   | 24 / 31   | 9 / 27   | 37.5 / 39.0    | 26 / 29 | 25 / 26    | 43 / 26 | 31 / 36    | 31.3 / 29.3 | 35.0 / 35.1 |
| BAGEL       | 46 / 74 | 70 / 80 | 23 / 26   | 29 / 37   | 21 / 29   | 7 / 40   | 32.7 / 47.7    | 37 / 38 | 31 / 25    | 50 / 52 | 39 / 28    | 39.3 / 35.8 | 35.3 / 42.9 |

#### (a) Understanding Enhances Generation (UEG)

| Model          | WK | CR      | MR-I     | LR   | SR | C2I | Total |
|----------------|----|---------|----------|------|----|-----|-------|
|                |    | Special | ized Mod | lels |    |     |       |
| GPT-Image-1    | 90 | 87      | 31       | 69   | 48 | 48  | 62.2  |
| Qwen-Image     | 66 | 83      | 28       | 44   | 25 | 67  | 52.2  |
| FLUX.1 Kontext | 53 | 73      | 25       | 27   | 25 | 37  | 40.0  |
|                |    | Unifi   | ed Model | ls . |    |     |       |
| Nano Banana    | 89 | 86      | 34       | 65   | 48 | 56  | 63.0  |
| UniPic2        | 61 | 73      | 31       | 28   | 25 | 7   | 37.5  |
| OneCAT         | 61 | 70      | 32       | 29   | 24 | 9   | 37.5  |

#### (b) Generation Enhances Understanding (GEU)

| Model          | MR-II     | MT     | AF   | CN | Total |
|----------------|-----------|--------|------|----|-------|
|                | Specializ | ed Mod | lels |    |       |
| Gemini 2.5 Pro | 30        | 73     | 73   | 43 | 54.8  |
| GPT-4.1        | 38        | 23     | 56   | 37 | 38.5  |
| Qwen2.5-VL     | 35        | 23     | 44   | 36 | 34.5  |
|                | Unified   | l Mode | ls   |    |       |
| BAGEL          | 37        | 31     | 50   | 39 | 39.3  |
| Ovis-U1        | 32        | 28     | 60   | 36 | 39.0  |
| BLIP3-o        | 36        | 25     | 57   | 32 | 37.5  |

# 12 SOTA models evaluated on RealUnify:

- UEG & GEU remain challenging
- Step-wise is better than direct answer
- All models lack true unification

# Comparison with SOTA specialist:

- Unify models benefit from understanding
- Generation may not help understanding currently

## **How Far Can We?**





Table 5: Comparisons with Gen-Und SOTA.

| Model                        | WK | CR   | MR-I | LR | SR | C2T | Total |
|------------------------------|----|------|------|----|----|-----|-------|
| Nano Banana                  | 89 | 86   | 34   | 65 | 48 | 56  | 63    |
| Und→Gen (SOTA)               | 93 | 86   | 43   | 70 | 53 | 91  | 72.7  |
| Model                        | MR | k-II | MT   | A  | F  | CN  | Total |
| BAGEL                        | 3′ | 7    | 31   | 5  | 0  | 39  | 39.3  |
| $Gen \rightarrow Und (SOTA)$ | 29 | 27   |      | 21 |    | 50  | 31.8  |

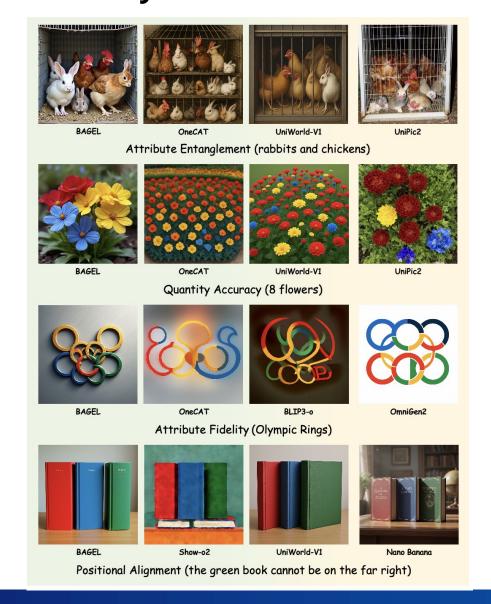
### **Comparison with Oracle Setting:**

- Current unified models can still learn from oracle cases -> Strong understanding leads to improved generation
- Both unified models and oracle settings fall short on GEU tasks -> Current generation models fall short in aiding real-world problem-solving.

## **Error Analysis** Unified models fall short in real-world image generation













## Thank You

Ziwei Liu 刘子纬

Nanyang Technological University



