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Background：Modular Vision-Language Models
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Modular	VLMs

n Dense	Visual	Encoder
🔥		Well	pre-alignment	across	modules.
🔥		Minimal	resource	costs	for	adaptation.
🧊		Strong	visual	pre-training	inductive	biases
🧊		Complex	infrastructure	development	and
					 scaling	analyses of	separate	components.

n Discrete	Visual	Tokenizer
🔥		Efficiently	model	the	unified VLMs.
🔥		Naturally	compatible	with	multiple	modalities.
🧊		Discretization	results	in	lossy	visual	features.
🧊		Perform	poorly	in	fine-grained	visual	perception.



𝐍𝐄𝐎

Thinking:
• Can	we	remove	vision	priors	

from	existing	VLMs?
• How	to	transfer an	LLM	to	a	

native	VLM	efficiently?
• How	to	bridge	the	gap between	

native	and	modular	VLMs?
• How	about	mutual	synergy	on	

understanding	and	generation	
capabilities	of	existing	VLMs	?

(ii) Differentiating

(i)
Aligning

(iii)
Reasoning

Modular	VLMs

Language	Model

Background：Native Vision-Language Models
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Outline：Native Vision-Language Models

RealUnify:	Do	Uni.ied	Models	Truly	Bene.it	from	Uni.ication?
Dual-Evaluation	Protocol,	Understanding-Generation	Synergy

Native	Multimodal	Evaluation

From	Pixels	to	Words:	Towards	Native	Vision-Language	Primitives	at	Scale
Native	Vision-Language	Primitive,	Holistic	Vision-Language	Buffer

Native	Multimodal	Architecture

Visual	Jigsaw	Post-Training	Improves	MLLMs
Self-supervised	Learning,	Post-training,	Reinforcement	Learning

Native	Multimodal	Post-Training
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From	Pixels	to	Words:	Towards	Native	Vision-Language	Primitives	at	Scale
Haiwen Diao, Mingxuan Li, Silei Wu, Linjun Dai, Xiaohua Wang, Hanming Deng, Lewei Lu, Dahua Lin, Ziwei Liu 



Motivation
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❓
Question：

§ What	fundamental	constraints	set	native	VLMs	apart	from	modular	
ones,	and	to	what	extent	can	these	barriers	be	overcome?

§ How	to	make	research	in	native	VLMs	more	accessible	and	
democratized,	thereby	accelerating	progress	in	the	field.

These	issues	prompts	us	to	think	about		what	a	native	primitive	
should	look	like	and	what	characteristics	it	should	have?



Motivation
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❗
From	 ;irst	principles,	one	native	VLM	primitive	should	：

§ effectively	align	pixel	and	word	representations	within	a	shared	
semantic	space;	

§ seamlessly	integrate	the	strengths	of	formerly	separate	vision	and	
language	modules;	

§ inherently	embody	various	cross-modal	properties	that	support	
uniDied	vision-language	encoding,	aligning,	and	reasoning



Motivation
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x	L Build	native	VLMs		from	first	principles	!	!	!	



Motivation
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x	L

Build	native	VLMs		by	leveraging	the	strengths	of	existing	VLM	designs	!	!	!	



Methodology
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(1). Introduce new FC/Norm into original Q, K for H, W



Methodology
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§ Native	Rotary	Position	Embeddings	(Native-RoPE)	eliminates	index	correlations and	decouples	channel	allocation	between	H	/	W	and	T;

§ Native-RoPE with	modality-speci4ic	frequencies captures	local	dependencies	across	H	/	W	/	T	and	long-range	relations	across	T;	



Methodology
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§ Native	Multi-Modal	Attention	captures	rich	spatial	correspondence	within	images and	contextual	vision-language	dependencies.

(3). Introduce Frame-wise Native Multi-Modal Attention



Methodology
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§ Modality-shared	pre-Buffer	maps	
vision	and	language	into	a	unified	
representation	space.

Reusable	for	extensible	ecosystem

§ Post-LLM absorbs	strong	language	
proficiency	and	powerful	reasoning	
capabilities	of	pre-trained	LLMs.

(-)	Model	Architecture

(-)	Training	Recipe
§ End-to-End Training	Procedure

§ Quite	Efficient	with	Limited	Data

With	390M image-text	samples,	NEO	
efficiently	develops	visual	perception	
from	scratch	while	mitigating	vision-
language	conflicts	inside	one	model.



Main Results
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(-)	Evaluation	Results	on	General	Understanding



Main Results
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-- With	quite	limited pre-training	and			

supervised	2ine-tuning	data	and	

-- Without	reinforcement	learning	(RL)

§ Approaches the	performance	of	top-tier	
modular	VLMs,	e.g.,	Qwen2	/	2.5-VL,	
InternVL2.5	/	3.

§ Delivers substantial	gains	on	diverse	
visual-centric	benchmarks	over	the	best	
competitors,	from	EVE series	to	SAIL.



Ablation Studies
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Here	8-12	primitive	layers	for	pre-Buffer

is	a	good	trade-off	for	pre-alignment.



Ablation Studies
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§ Modality-specific	RoPE frequency	does	count	!

§ RoPE indexes	allocation	for	H,	W,	T	does	count	!
§ Mixed	Multi-Modality	Attention	Mechanism	does	count	!



Ablation Studies
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PB	1–3	denotes	the	Pre-Buffer	after	stage	1–3.

PB3	shows	only	an	average	gap	of	2.5	/	2.4	/	1.7	/	3.7%	
over	NEO	/	InternViT /	CLIP	/	SigLIP,	reducing	training	
costs	of	building	native	VLMs	for	subsequent	research.
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Visual	Jigsaw	Post-Training	Improves	MLLMs
Penghao Wu, Yushan Zhang, Haiwen Diao, Bo Li, Lewei Lu, Ziwei Liu



Motivation

RL-based	Post-training	for	MLLMs
§ Text-centric	reasoning	on	math/science/coding	problems	
§ Specific	vision	tasks	(grounding,	detection,	segmentation,	counting)
§ Tool-using	(thinking	with	images)

20

Most	works	focused	on	enhancing	text-centric	
reasoningwhere	visual	inputs	work	only	as	context

[1] Tan, Huajie, et al. "Reason-rft: Reinforcement fine-tuning for visual reasoning." arXiv preprint arXiv:2503.20752 (2025).



Motivation

How	to	improve	intrinsic	vision-centric	capabilities	of	MLLMs?
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How	do	we	learn	good	vision	representation?

§ Methods	like	ROSS	[1]	shows	dense	image	reconstruction	helps	understanding,	but	requiring	additional	
vision	generation	modules	and	designs.	Do	we	need	dense	pixel-level	reconstruction?

§ Unified	Multimodal	Models	(UMMs)	only	shows	understanding	benefits	visual	generation

Self-supervised	learning!

Other	pretext	tasks	like	rotation	
prediction	and	jigsaw-style tasks

Easier	version	of	reconstruction
Suitable	for	MLLMs
(compatible	with	text-output	MLLM)

[1] Wang, Haochen, et al. "Reconstructive visual instruction tuning." arXiv preprint arXiv:2410.09575 (2024).

[2] Uelwer, Tobias, et al. "A survey on self-supervised representation learning." arXiv preprint arXiv:2308.11455 (2023).

Reconstruction-based	methods Discriminative/contrastive	methods



Visual Jigsaw
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Visual	Data	→ Partitioning	→ ShufVling	

Model	reconstruct	the	data	by	
predicting	the	indices	in	correct	order	

Optimize	using	the	GRPO	algorithm



Image Jigsaw
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Image	→ 3	*	3	image	patches

Mentally	reconstruct	the	image	and	output	the	patch	indices	in	the	correct	raster	scan	order.



Image Jigsaw
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Enhance	vision-centric	capabilities:
• Fine-grained	perception	&	understanding
• Monocular	spatial	understanding
• Compositional	visual	understanding



Video Jigsaw
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Video	→ 6	video	clips

Mentally	reconstruct	the	video	and	
output	the	clip	indices	in	the	
correct	chronological	order.



Video Jigsaw
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§ Enhances	general	video	perception	and	comprehension
§ Large	gain	on	temporal-centric	understanding	and	reasoning	about	temporal	directionality	(e.g.	AoTBench)
§ Improved	cross-video	understanding	and	reasoning	(CVBench)



Video Jigsaw
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• Consistent	improvement	on	stronger	base	model:	MiMo-VL-7B-SFT-2508



3D Jigsaw
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RGB-D	→ 6 points
Order the points from closest to farthest relative to the camera.



3D Jigsaw
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§ Largest	gains	on	directly	related	task	– DA-2K
§ Consistent	improvements	on	a	wide	range	of	other	tasks	(single-view,	multi-views,	egocentric	video)



Ablation Studies
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§ RL	outperforms	SFT

§ The	difficulty	of	the	jigsaw	tasks	matters

§ Apply	jigsaw	task	training	before	text-centric/long	CoT reasoning	training

Future Works

§ Different	3D	jigsaw	designs	on	base	models	with	stronger	3D	capabilities

§ Different	jigsaw	configurations	and	combinations

§ Other	vision-centric	self- and	weakly-supervised	tasks
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RealUnify:	Do	Unified	Models	Truly	Benefit	from	Unification?
Yang Shi, Yuhao Dong, Yue Ding, Yuran Wang, Xuanyu Zhu, Sheng Zhou, Wenting Liu, Haochen Tian, Rundong Wang, 
Huanqian Wang, Zuyan Liu, Bohan Zeng, Ruizhe Chen, Qixun Wang, Zhuoran Zhang, Xinlong Chen, Chengzhuo Tong, Bozhou
Li, Chaoyou Fu, Qiang Liu, Haotian Wang, Wenjing Yang, Yuanxing Zhang, Pengfei Wan, Yi-Fan Zhang, Ziwei Liu



Specific Combine Emergent

Easy	to	evaluate	with	current	benchmarks Lack	of	customized	benchmarks

Motivation



Previous	Benchmarks Customized	Unified	Benchmark

Direct	->	Combination	->	Reasoning True	Unification

Motivation



Task Taxonomy
Understanding	->	Generation	(UEG) Generation	-> Understanding	

(GEU)



How to Evaluate

Direct	->	Step-wise

Direct: Whether the model can leverage
generation & understanding synergistically

Step-Wise: Decouple generation & understanding
for better assignment



Evaluate with RealUnify

12	SOTA	models	evaluated	
on	RealUnify:
• UEG	&	GEU	remain	
challenging

• Step-wise	is	better	than	
direct	answer

• All	models	lack	true	
unification

Comparison	with	SOTA	
specialist:
• Unify	models	benefit	from	
understanding

• Generation	may	not	help	
understanding	currently



How Far Can We?

Comparison	with	Oracle	Setting:	

• Current	uni`ied	models	can	still	learn	from	

oracle	cases	->	Strong	understanding	leads	

to	improved	generation

• Both	uni`ied	models	and	oracle	settings	fall	

short	on	GEU	tasks	->	Current	generation	

models	fall	short	in	aiding	real-world	

problem-solving.



Unified	models	fall	short	in	real-world	image	generationError Analysis
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