

# LMMs-Lab

Building Multimodal Intelligence

Ziwei Liu

Nanyang Technological University, Singapore

https://lmms-lab.github.io/

# LMMs-Lab

Building multimodal intelligence

LMMs-Eval

LLaVA-NeXT

□ LLaVA-NeXT Video

# LMMs-Eval

## **LMMs-Eval Framework Provides:**

Holistic, Standardized and Reproducible Evaluation.

□ A Unified Interfaces for Multimodal

Tasks and Models.

### Holistic, Standardized and Reproducible Evaluation Guides Al

#### Holistic evaluation is necessary

 More evaluations from different dimensions could better reflect model's overall performance.

| Method                | FT          | Shot         | OKVQA (I)                   | VQAv2 (I)                        | COCO (I)                          | MSVDQA (V)                     | VATEX (V)                        | VizWiz (I)                     | Flick30K (I)                    | MSRVTTQA (V)                    | iVQA (V)                       | YouCook2 (V)                     | STAR (V)                        | VisDial (I)                     | TextVQA (I)                    | NextQA (I)                      | HatefulMemes (I)              | RareAct (V)                        |
|-----------------------|-------------|--------------|-----------------------------|----------------------------------|-----------------------------------|--------------------------------|----------------------------------|--------------------------------|---------------------------------|---------------------------------|--------------------------------|----------------------------------|---------------------------------|---------------------------------|--------------------------------|---------------------------------|-------------------------------|------------------------------------|
| Zero/Few<br>shot SOTA | x           | (X)          | [34]<br>43.3<br>(16)        | [114]<br>38.2<br>(4)             | [124]<br>32.2<br>(0)              | [58]<br>35.2<br>(0)            | -                                | -                              | -                               | [58]<br>19.2<br>(0)             | [135]<br>12.2<br>(0)           | -                                | [143]<br>39.4<br>(0)            | [79]<br>11.6<br>(0)             | -                              | -                               | [85]<br>66.1<br>(0)           | [ <mark>85</mark> ]<br>40.7<br>(0) |
| Flamingo-3B           | X<br>X<br>X | 0<br>4<br>32 | 41.2<br>43.3<br>45.9        | 49.2<br>53.2<br>57.1             | 73.0<br>85.0<br>99.0              | 27.5<br>33.0<br>42.6           | 40.1<br>50.0<br>59.2             | 28.9<br>34.0<br>45.5           | 60.6<br>72.0<br>71.2            | 11.0<br>14.9<br>25.6            | 32.7<br>35.7<br>37.7           | 55.8<br>64.6<br>76.7             | 39.6<br>41.3<br>41.6            | 46.1<br>47.3<br>47.3            | 30.1<br>32.7<br>30.6           | 21.3<br>22.4<br>26.1            | 53.7<br>53.6<br>56.3          | 58.4                               |
| Flamingo-9B           | X<br>X<br>X | 0<br>4<br>32 | 44.7<br>49.3<br>51.0        | 51.8<br>56.3<br>60.4             | 79.4<br>93.1<br>106.3             | 30.2<br>36.2<br>47.2           | 39.5<br>51.7<br>57.4             | 28.8<br>34.9<br>44.0           | 61.5<br>72.6<br>72.8            | 13.7<br>18.2<br>29.4            | 35.2<br>37.7<br>40.7           | 55.0<br>70.8<br>77.3             | 41.8<br>42.8<br>41.2            | 48.0<br>50.4<br>50.4            | 31.8<br>33.6<br>32.6           | 23.0<br>24.7<br>28.4            | 57.0<br>62.7<br>63.5          | 57.9<br>-<br>-                     |
| Flamingo              | X<br>X<br>X | 0<br>4<br>32 | 50.6<br>57.4<br><b>57.8</b> | 56.3<br>63.1<br><b>67.6</b>      | 84.3<br>103.2<br><b>113.8</b>     | 35.6<br>41.7<br><b>52.3</b>    | 46.7<br>56.0<br><b>65.1</b>      | 31.6<br>39.6<br><b>49.8</b>    | 67.2<br>75.1<br><b>75.4</b>     | 17.4<br>23.9<br><b>31.0</b>     | 40.7<br>44.1<br><b>45.3</b>    | 60.1<br>74.5<br><b>86.8</b>      | 39.7<br>42.4<br>42.2            | 52.0<br>55.6<br>55.6            | 35.0<br>36.5<br><b>37.9</b>    | 26.7<br>30.8<br><b>33.5</b>     | 46.4<br>68.6<br><b>70.0</b>   | <u>60.8</u><br>-<br>-              |
| Pretrained<br>FT SOTA | V           | (X)          | 54.4<br>[34]<br>(10K)       | 80.2<br>[ <b>140</b> ]<br>(444K) | 143.3<br>[ <b>124</b> ]<br>(500K) | 47.9<br>[ <b>28</b> ]<br>(27K) | 76.3<br>[ <b>153</b> ]<br>(500K) | 57.2<br>[ <b>65</b> ]<br>(20K) | 67.4<br>[ <b>150</b> ]<br>(30K) | 46.8<br>[ <b>51</b> ]<br>(130K) | 35.4<br>[ <b>135</b> ]<br>(6K) | 138.7<br>[ <b>132</b> ]<br>(10K) | 36.7<br>[ <b>128</b> ]<br>(46K) | 75.2<br>[ <b>79</b> ]<br>(123K) | 54.7<br>[ <b>137]</b><br>(20K) | 25.2<br>[ <b>129</b> ]<br>(38K) | 79.1<br>[ <b>62</b> ]<br>(9K) | -                                  |

Flamingo model was (at 2022) a state-of-the-art multimodal model on multiple datasets across image and video modalities.

Table 1: **Comparison to the state of the art.** A *single* Flamingo model reaches the state of the art on a wide array of image (I) and video (V) understanding tasks with few-shot learning, significantly outperforming previous best zero- and few-shot methods with as few as four examples. More importantly, using only 32 examples and without adapting any model weights, Flamingo *outperforms* the current best methods – fine-tuned on thousands of annotated examples – on seven tasks. Best few-shot numbers are in **bold**, best numbers overall are underlined.

### Holistic, Standardized and Reproducible Evaluation Guides Al

Standardized and reproducible evaluation is necessary



Previously, developers collect and evaluate on each task. Non-standardized tasks make reproducibility and comparison with prior work expensive (and sometimes impossible)

### Holistic, Standardized and Reproducible Evaluation Guides Al

Benchmarks emerge fast. Everyday, we have new benchmarks.



Previously, developers collect and evaluate on each task.

Non-standardized tasks make reproducibility and comparison with prior work expensive (and sometimes impossible)



We wish to have a unified evaluation toolkit that defines the interface for multimodal tasks and models. LMMs-Eval is an efficient, standardized and reproducible evaluation framework for accelerating the development for largescale multimodal models



| <b>Datasets: B</b> lmms                                                                          | -lab/MME 🗅 🗢 like                                               | 9                                                                               |                                    |                                      |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| Size Categories: 1K <n<10k< td=""><td>Tags: 🥐 Croissant</td><td></td><td></td><td></td></n<10k<> | Tags: 🥐 Croissant                                               |                                                                                 |                                    |                                      |
| Dataset card  H Vi                                                                               | ewer 🛛 🚈 Files and vers                                         | sions 🤌 Community 2                                                             |                                    |                                      |
| Dataset Viewer                                                                                   |                                                                 | G <u>Auto-co</u>                                                                | onverted to Parquet (> API         | View in Dataset Viewer               |
| Split (1)<br>test · 2.37k rows                                                                   |                                                                 | $\checkmark$                                                                    |                                    |                                      |
| Q Search this dataset                                                                            |                                                                 |                                                                                 |                                    |                                      |
| <pre>question_id string · lengths</pre>                                                          | <pre>image image · width (px)</pre>                             | <b>question</b><br>string · <i>lengths</i>                                      | <pre>answer string · classes</pre> | <pre>category string · classes</pre> |
| <b>1</b> 2 <b>3</b> 9                                                                            | 155 8.69k                                                       | 42 160                                                                          | 2 values                           | 14 values                            |
| code_reasoning/0020.png                                                                          | print ("Hello, C++!")                                           | Is a python code shown in the picture?<br>Please answer yes or no.              | Yes                                | code_reasoning                       |
| code_reasoning/0020.png                                                                          | print ("Hello, C++!")                                           | Is a c++ code shown in the picture? Pleas<br>answer yes or no.                  | e No                               | code reasoning                       |
| code_reasoning/0014.png                                                                          | <pre>a = [1,6,2,7,3,4,5]<br/>b = a[0] + a[1]<br/>print(b)</pre> | The image shows a python code. Is the output of the code '7'? Please answer yes | Yes                                | code_reasoning                       |
| code_reasoning/0014.png                                                                          | <pre>a = [1,6,2,7,3,4,5]<br/>b = a[0] + a[1]<br/>print(b)</pre> | The image shows a python code. Is the output of the code '1'? Please answer yes | No                                 | code_reasoning                       |
|                                                                                                  | a = 'a dog'<br>< Pr                                             | The image shows a nython code. Ts the                                           | >                                  |                                      |

LMMs-Eval defines the evaluation dataset format.

It requires the necessary items fully visible on Huggingface, enabling developers to check and have the direct sense on evaluation dataset.

dataset\_path: lmms-lab/MME dataset\_kwargs: token: True task: "mme" test\_split: test output\_type: generate\_until doc\_to\_visual: !function utils.mme\_doc\_to\_visual doc\_to\_text: !function utils.mme\_doc\_to\_text doc to target: "answer" generation\_kwargs: max\_new\_tokens: 16 temperature: 0 top\_p: 1.0 num\_beams: 1 do sample: false process\_results: !function utils.mme\_process\_results metric\_list: - metric: mme\_percetion\_score aggregation: !function utils.mme\_aggregate\_results higher\_is\_better: true - metric: mme\_cognition\_score aggregation: !function utils.mme\_aggregate\_results higher\_is\_better: true model\_specific\_prompt\_kwargs: default pre\_prompt: "" post\_prompt: "\nAnswer the question using a single word or phrase." apt4v: pre\_prompt: "" post prompt: "\nAnswer the question with Yes or No." qwen\_vl: pre\_prompt: "" post\_prompt: " Answer:"

#### LMMs-Eval defines the task interfaces via

- dataset metainfo
- generation\_kwargs (some tasks require shorter answer)
- multiple evaluation metrics
- model specific prompts (some models need specific prompt to better match the answer)

Q

The Imms class enforces a common interface via which we can extract responses from a model:

```
class MyCustomLM(lmms):
    #...
    def loglikelihood(self, requests: list[Instance]) -> list[tuple[float, bool]]:
        #...
    def generate_until(self, requests: list[Instance]) -> list[str]:
        #...
```

#...

Where Instance is a dataclass defined in <u>lmms\_eval.api.instance</u> with property args of request-dependent type signature described below.

We support three types of requests, consisting of different interactions / measurements with an autoregressive LM.

All three request types take as input requests of type list[Instance] that have a matching Instance.request\_type to the method name. Overall, you can check the <u>construct\_requests</u> to see how the arguments are being constructed for different types of output type requests.

- generate\_until
  - Each request contains Instance.args : Tuple[str, dict] containing 1. an input string to the LM and 2. a dictionary of keyword arguments used to control generation parameters.
  - In each Instance.args there will be 6 elements which are contexts, all\_gen\_kwargs, doc\_to\_visual, doc\_id, task, split.
     contexts refers to the formatted question and is the text input for the LMM. Sometimes it might contains image token and need to address differently for different models. all\_gen\_kwargs refers to the dict that contains all the generation configuration for the model. We use doc\_id, task, and split to access the dataset and then you can use doc\_to\_visual which is a function reference to process the image. When you implement your own model, you should use these to write your own generate\_util function.
  - Using this input and these generation parameters, text will be sampled from the language model (typically until a maximum output length or specific stopping string sequences--for example, {"until": ["\n\n", "."], "max\_gen\_toks": 128}).
  - $\,\circ\,$  The generated input+output text from the model will then be returned.

We abstract the models and allows:

- integrated implementation
- multi-gpu evaluation
- tensor parallelism evaluation (for 72b/110b models, or 34b models on limited-memory GPUs)



| batch_gpt4.py   | 🗋 minicpm_v.py     |  |  |  |  |  |  |  |  |
|-----------------|--------------------|--|--|--|--|--|--|--|--|
| 🗋 claude.py     |                    |  |  |  |  |  |  |  |  |
| 🗋 from_log.py   | mplug_owl_video.py |  |  |  |  |  |  |  |  |
| 🗋 fuyu.py       | 🗋 phi3v.py         |  |  |  |  |  |  |  |  |
| 🗋 gemini_api.py | 🗅 awen vl.pv       |  |  |  |  |  |  |  |  |
| 🗋 gpt4v.py      |                    |  |  |  |  |  |  |  |  |
| idefics2.py     | 🗋 qwen_vl_api.py   |  |  |  |  |  |  |  |  |
| instructblip.py | 🗋 reka.py          |  |  |  |  |  |  |  |  |
| 🗋 internvl.py   | 🗋 video_chatgpt.py |  |  |  |  |  |  |  |  |
| 🗋 llama_vid.py  |                    |  |  |  |  |  |  |  |  |
| 🗋 Ilava.py      | 📋 video_llava.py   |  |  |  |  |  |  |  |  |
| 🗋 llava_hf.py   | xcomposer2_4KHD.py |  |  |  |  |  |  |  |  |
| (b) Models      |                    |  |  |  |  |  |  |  |  |

LMMs-Eval integrates 50+ image tasks, 10+ video tasks and ~10 state-of-the-art level LMM models.

ΓŪ

ΓŪ

#### Evaluation of LLaVA on multiple datasets

```
python3 -m accelerate.commands.launch \
    --num_processes=8 \
    -m lmms_eval \
    --model llava \
    --model_args pretrained="liuhaotian/llava-v1.5-7b" \
    --tasks mme,mmbench_en \
    --batch_size 1 \
    --log_samples \
    --log_samples \
    --log_samples_suffix llava_v1.5_mme_mmbenchen \
    --output_path ./logs/
```

#### For other variants llava. Please change the conv\_template in the model\_args

conv\_template is an arg of the init function of llava in lmms\_eval/models/llava.py , you could find the corresponding value at LLaVA's code, probably in a dict variable conv\_templates in llava/conversations.py

```
python3 -m accelerate.commands.launch \
    --num_processes=8 \
    -m lmms_eval \
    --model llava \
    --model_args pretrained="liuhaotian/llava-v1.6-mistral-7b,conv_template=mistral_instruct"
    --tasks mme,mmbench_en \
    --batch_size 1 \
    --log_samples \
    --log_samples_suffix llava_v1.5_mme_mmbenchen \
    --output_path ./logs/
```

#### LMMs-Eval is

- One-line installation.
- One-line evaluation.

|    | A 👻                 | в                | С            | D           | E                            | F                            | G                             | н                             | I                                    | J                                   | к                                    | L                             |
|----|---------------------|------------------|--------------|-------------|------------------------------|------------------------------|-------------------------------|-------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------|
| 1  |                     | LMMs             | -Eval        |             |                              | LLaV                         | /A-1.5                        |                               |                                      | LLaV/                               | <b>A-1.6</b>                         |                               |
| 2  | Datasots            |                  | Meta Info    |             | 1.5-7B (report)              | 1.5-7B<br>(Imms-eval)        | 1.5-13B<br>(report)           | 1.5-13B<br>(Imms-eval)        | 1.6-7B<br>(Imms-eval)                | 1.6-7B<br>(Imms-eval)               | 1.6-13B<br>(Imms-eval)               | 1.6-34B<br>(Imms-eval)        |
| 3  | Dalasels            | Split            | Metric       | #Num        | liuhaotian/llava-v1.<br>5-7b | liuhaotian/llava-v1.<br>5-7b | liuhaotian/llava-v1.<br>5-13b | liuhaotian/llava-v1.<br>5-13b | liuhaotian/llava-v1.6-<br>mistral-7b | liuhaotian/llava-v1.<br>6-vicuna-7b | liuhaotian/llava-v1.<br>6-vicuna-13b | liuhaotian/llava-v1.<br>6-34b |
| 4  | AI2D                | test             | Acc          | 3,088       | -                            | 54.79                        | -                             | 59.49                         | 60.75                                | 66.58                               | 70.04                                | 74.94                         |
| 5  | ChartQA             | test             | RelaxedAcc   | 2,500       | -                            | 18.24                        | -                             | 18.20                         | 38.76                                | 54.84                               | 62.2                                 | 68.72                         |
| 6  | CMMMU               | val              | Acc          | 900         | -                            | 21.80                        | -                             | 26.30                         | 22.7                                 | 24                                  | 23,2                                 | 39.9                          |
| 7  | COCO-Cap            | cococap_val_2014 | CIDEr        | 40,504      | -                            | 108.66                       | -                             | 113.88                        | 107.66                               | 96.98                               | 99.45                                | 103.16                        |
| 8  | COCO-Cap            | cococap_val_2017 | CIDEr        | 5,000       | -                            | 110.38                       | -                             | 115.61                        | 109.22                               | 99.93                               | 101.99                               | 105.89                        |
| 9  | DocVQA              | val              | ANLS         | 5,349       | -                            | 28.08                        | -                             | 30.29                         | 72.16                                | 74.35                               | 77.45                                | 83.98                         |
| 10 | Flickr              | -                | CIDEr        | 31,784      | -                            | 74.93                        | -                             | 79.59                         | 73.14                                | 68.44                               | 66.7                                 | 68.48                         |
| 11 | GQA                 | gqa_eval         | Acc          | 12,578      | 62.00                        | 61.97                        | 63.30                         | 63.24                         | 54.98                                | 64.23                               | 65.36                                | 67.08                         |
| 12 | Hallusion-Ben<br>ch | test             | All Acc.     | 951         |                              | 44.90                        |                               | 42.27                         | 41.74                                | 41.53                               | 44.47                                |                               |
| 13 | InfoVQA             | val              | ANLS         | 2,801       | -                            | 25.81                        | -                             | 29.35                         | 43.77                                | 37.09                               | 41.34                                | 51.45                         |
| 14 | LLaVA-W             | test             | GPT-Eval-Avg | 60          | 63.40                        | 65.3 (0314)<br>59.6 (0613)   | -                             | 72.8 (0314)<br>66.1 (0613)    | 71.7 (0613)                          | 72.3 (0613)                         | 72.3 (0613)                          |                               |
| 15 | MathVista           | testmini         | Acc          | 1,000       | 27.40                        | 26.70                        | 27.60                         | 26.40                         | 37.4                                 | 34.4                                | 35.1                                 |                               |
| 16 | MMBench             | dev              | Acc          | 4377 (dev)\ | 64.30                        | 64.80                        | 67.70                         | 68.73                         |                                      |                                     |                                      |                               |
| 17 | MMBench-Ch          | dev              | Acc          | 4329 (dev)  | 58.30                        | 57.62                        | 63.60                         | 62.54                         |                                      |                                     |                                      |                               |
| 18 | MME-Cognitio<br>n   | test             | total score  | 2,374       | -                            | 348.21                       | -                             | 295.35                        | 323.92                               | 322.5                               | 316.78                               | 397.14                        |
| 19 | MME-Percepti<br>on  | test             | total score  | 2,374       | 1510.70                      | 1510.75                      | -                             | 1522.59                       | 1500.85                              | 1519.29                             | 1575.07                              | 1633.24                       |
| 20 | ммми                | val              | Acc          | 900         | -                            | 35.30                        | 36.40                         | 34.80                         | 33.4                                 | 35.1                                | 35.9                                 | 46.7                          |
| 21 | MMVet               | test             | GPT-Eval-Avg | 218         | 30.50                        | 30.55                        | -                             | 35.25                         | 47.75                                | 44.08                               | 49.12                                |                               |
| 22 | MultidocVQA         | val              | Anls/acc     | 5,187       |                              | 16.65/7.21                   |                               | 18.25/8.02                    | 41.4/27.89                           | 44.42/31.32                         | 46.28/32.56                          | 50.16/34.93                   |
| 23 | NoCaps              | nocaps_eval      | CIDEr        | 4,500       | -                            | 105.54                       | -                             | 109.28                        | 96.14                                | 88.29                               | 88.27                                | 91.94                         |
| 24 | OKVQA               | val              | Acc          | 5,046       | -                            | 53.44                        | -                             | 58.22                         | 54.77                                | 44.25                               | 46.27                                | 46.84                         |
| 25 | POPE                | test             | F1 Score     | 9,000       | 85.90                        | 85.87                        | -                             | 85.92                         | 86.79                                | 86.4                                | 86.26                                | 87.77                         |
| 26 | ScienceQA           | scienceqa-full   | Acc.         | 4,114       | -                            | 70.41                        | -                             | 74.96                         | 0.23                                 | 73.21                               | 75.85                                | 85.81                         |
| 27 | ScienceQA           | scienceqa-img    | Acc          | 2,017       | 66.80                        | 70.43                        | 71.60                         | 72.88                         | 0                                    | 70.15                               | 73.57                                |                               |
| 28 | SEED-Bench          | Seed-1           | Image-Acc    | 17,990      | total: 58.6                  | total: 60.49                 | image: 66.92                  | image: 67.06                  | 65.97                                | 64.74                               | 65.64                                | 69.55                         |
|    |                     |                  |              | i           | i                            | i                            | i                             | · · · ·                       |                                      |                                     | · · ·                                | i                             |

We aligned the LLaVA series

models results on LMMs-

Eval with original reported

values.

During our review to public

PRs, we require the authors

to report an aligned results

and then accept the PRs.

#### **Post-evaluation Analysis**



We provide the detail logs including:

- Model Input

- Model Response

For tasks require GPT as

judge, we also record

- GPT Scores and

Responses



# What's More

- Lite Tool
- Decontainmination Tool
- LiveBench

# **Lite Tool**



Development problems

- Many checkpoints
- Unable to perform large scale

evaluation

 Can't decide which one is better without holistic evaluation

LMMs-Eval Lite

- Trade-off between evaluation

accuracy and speed

- More diverse evaluation
- Lower cost

| Task Domain                      | Dataset                                    | Split                                | Full Size                     | Lite Size                 |
|----------------------------------|--------------------------------------------|--------------------------------------|-------------------------------|---------------------------|
| Doc & Infographic Understanding  | ChartQA<br>DocVQA                          | test<br>val                          | 2500<br>5349                  | 400<br>400<br>200         |
| Image Understanding & Captioning | Flickr30k<br>NoCaps<br>TextCaps<br>BefCOCO | val<br>val<br>val<br>val             | 31784<br>4500<br>3166<br>8811 | 400<br>400<br>300<br>500  |
| Visual Question Answering        | TextVQA                                    | val                                  | 5000                          | 300                       |
| Math & Science                   | MathVista<br>AI2D                          | testmini<br>test                     | 1000<br>3088                  | 1000<br>300               |
| Visual Dialogue                  | LLaVA-W                                    | test                                 | 60                            | 60                        |
| Multi-discipline                 | MME<br>MMMU<br>CMMMU<br>Seed-Bench         | cog. & percep.<br>val<br>val<br>test | 2374<br>900<br>900<br>17990   | 2374<br>900<br>900<br>700 |
| -                                | Total                                      | -                                    | 90223                         | 9134                      |

- Current Lite dataset

#### statistics

- Working on including more

#### datasets!

# **Decontamination Analysis**



# Data Overlapping Statistics - (LLaVA 1.6 mix training data)



# LiveBench

## Multi-Modal LiveBench:

□ Real-world scenarios

Diversity

Uncontaminated

## **Multi-Modal LiveBench**



LiveBench Features:

- Automated updated
- Diverse Knowledge Base
- Real world use case
- Unable to contaminate

# **LiveBench-May Results**

| Models               | Overall Acc. (%) | Basic | Contextual | Deeper Impl. | Broader Impl. | Insights |
|----------------------|------------------|-------|------------|--------------|---------------|----------|
| Idefics-2-8B         | 48.5             | 56.7  | 46.7       | 41.3         | 47.9          | 38.8     |
| InstructBLIP-13B     | 53.0             | 26.0  | 72.5       | 69.4         | 78.6          | 49.4     |
| LLaVA-1.5-7B         | 73.0             | 57.0  | 85.4       | 80.6         | 94.3          | 66.5     |
| LLaVA-1.5-13B        | 78.9             | 64.2  | 91.5       | 77.5         | 93.8          | 83.0     |
| XComposer-4KHD       | 79.3             | 80.5  | 82.5       | 75.6         | 82.3          | 72.9     |
| Gemini-1.5-Flash     | 88.7             | 87.6  | 87.7       | 88.1         | 91.1          | 90.4     |
| InternVL-1.5         | 85.1             | 86.4  | 90.6       | 86.5         | 81.0          | 77.5     |
| LLaVA-NeXT-34B       | 86.9             | 81.2  | 89.2       | 93.8         | 91.3          | 85.6     |
| LLaVA-NeXT-72B       | 88.1             | 85.5  | 91.0       | 93.8         | 88.6          | 83.8     |
| Best Human           | 92.6             | 97.4  | 97.1       | 88.7         | 90.0          | 89.9     |
| GPT-4-Vision-Preview | 93.2             | 94.7  | 96.7       | 86.3         | 95.3          | 89.9     |
| GPT-4(Omni)          | 96.3             | 93.3  | 97.6       | 95.6         | 98.4          | 100.0    |
| GPT-4-Turbo          | 96.9             | 93.8  | 99.5       | 96.9         | 97.9          | 100.0    |

More websites and questions will be included in June release

#### **Community Support**

During the v0.1 to v0.2, we thank the community support from pull requests (PRs). Details are in <u>Imms-eval/v0.2.0</u> release notes

#### **Datasets:**

VCR: Visual Caption Restoration (officially from the authors, MILA) ConBench (officially from the authors, PKU/Bytedance) MathVerse (officially from the authors, CUHK) MM-UPD (officially from the authors, University of Tokyo) WebSRC (from Hunter Heiden) ScreeSpot (from Hunter Heiden) RealworldQA (from Fanyi Pu, NTU) Multi-lingual LLaVA-W (from Gagan Bhatia, UBC) II-Bench (from MAP Research Community) LongVideoBench (from NTU, 01.AI)

#### Models:

LLaVA-HF (officially from Huggingface) Idefics-2 (from the Imms-lab team) microsoft/Phi-3-Vision (officially from the authors, Microsoft) LLaVA-SGlang (from the Imms-lab team)



### More on LMMs-Lab

# LLaVA-NeXT Project LLaVA-NeXT Video Project

#### LLaVA-NeXT



#### Stronger LLMs Supercharge Multimodal Capabilities in the Wild

- We expand current LLaVA-NeXT to 3x model size, up to 72B and 110B model.
- We found that, under the same training strategy, stronger LLM naturally brings stronger multimodal performance.

#### LLaVA-NeXT

#### **Benchmark Results**

| I                  | Results with | LMMs-Eval   |           |        | LLaVA-NeXT (2024-05 Release) |                 |           |  |  |
|--------------------|--------------|-------------|-----------|--------|------------------------------|-----------------|-----------|--|--|
| Datasets           | Split        | Metric      | Instances | GPT4-V | Qwen1.5-<br>110B             | Qwen1.5-<br>72B | LLaMA3-8B |  |  |
| AI2D*              | test         | Acc.        | 3088      | 78.2   | 80.4                         | 77.4            | 71.6      |  |  |
| ChartQA*           | test         | RelaxedAcc. | 2500      | 78.5   | 79.7                         | 77.0            | 69.5      |  |  |
| DocVQA*            | val          | ANLS        | 5349      | -      | 85.7                         | 84.4            | 78.2      |  |  |
| MathVista          | test         | Acc.        | 1000      | 49.9   | 49.0                         | 46.6            | 37.5      |  |  |
| MMBench            | dev          | Acc.        | 4377      | 75.0   | 80.5                         | 80.5            | 72.1      |  |  |
| MME-<br>Cognition  | test         | Total Score | 2374      | 517.1  | 453.9                        | 459.6           | 367.8     |  |  |
| MME-<br>Perception | test         |             | 2374      | 1409.4 | 1746.5                       | 1699.3          | 1603.7    |  |  |
| MMMU               | val          | Acc.        | 900       | 56.8   | 50.1                         | 49.9            | 41.7      |  |  |
| RealWorldQA        | test         | Acc.        | 765       | 61.4   | 63.1                         | 65.4            | 60.0      |  |  |
| LLaVA-W**          | test         | GPT4-Eval   | 60        | 98.0   | 90.4                         | 89.2            | 80.1      |  |  |
| LLaVA-             | Small        | GPT4V-Eval  | 120       | 71.5   | 70.5                         | 71.2            | 62.5      |  |  |
| (Wilder)           | Medium       | GPT4V-Eval  | 1020      | 78.5   | 72.5                         | 73.4            | 63.1      |  |  |

LLaVA-NeXT reaches to GPT4 V level multimodal
 performance.

Our largest model, LLaVA NeXT-110B model only trained
 on 128-H800 for 18 hours.

\*Train split observed during SFT stage.

\*\*We report the evaluation results with GPT-4-0613 on LLaVA-W.

#### LLaVA-NeXT

| Chatbot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Home About StartHere Login<br>Blog Title #1<br>Text here<br>Text here<br>Text here<br>Text here<br>Text here                                                                                                                                                                                                                                                                                                                                                                                        |                                     |
| Here's a design for blogging website. Provide the working source code for the website using HTML, CSS and JavaScript as req<br>The image you've provided is a hand-drawn sketch of a website layout, which includes a navigation bar with links to "Home," "Abour<br>Here," and "Login," as well as three blog post sections with titles and text content.<br>To create a website based on this design, you would typically use HTML for the structure, CSS for the styling, and JavaScript for any | uired.<br>t," "Start<br>interactive |
| <pre>elements. Here's a simplified example of how you might code this in HTML and CSS:</pre>                                                                                                                                                                                                                                                                                                                                                                                                        | 6                                   |
| + Enter message or upload file                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ð                                   |
| None     Up-Vote     Down-Vote     Regenerate                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Send                                |

Info for LLaVA-NeXT:

1. Technical report: <u>https://llava-vl.github.io/blog</u>

2. Model and code: https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file

Please visit our demos to try more <u>https://llava-next.lmms-</u> <u>lab.com/</u>



## LLaVA-NeXT Video

Takeaway message 1: A unified view of images and videos is important for leveraging highquality image data in video understanding.



LLaVA-NeXT Video digests a set of image patches/frames as a sequence of concatenated visual tokens, allowing unified view of image and video input.

## LLaVA-NeXT Video

Takeaway message 2: Direct Preference Optimization (DPO) from AI Feedback Direct Preference Optimization from AI Feedback allows an LMM to reduce hallucination and follow the instructions better.

User: Please provide a detailed description of the video, focusing on the main subjects, their actions, the background scenes, and the temporal transitions.



#### LLaVA-NeXT-Video-DPO

The video depicts a dynamic and surreal scene where the action of surfing is juxtaposed with an indoor setting. In the foreground, there are two surfers riding waves, one slightly ahead of the other, maintaining their balance on surfboards. The surfer in the foreground is skillfully navigating the crest of a wave, while the one behind is positioned on the face of the wave, both displaying athletic postures typical of surfing. The waves are large and crashing, with the wave in the background creating a dramatic arc that suggests motion and power.

The background is an opulent interior space with high vaulted ceilings, ornate detailing, and classical architecture, including arches and what appears to be marble or stone work. The lighting is warm, with a golden hue that contrasts with the cool tones of the water. The architecture suggests a grand hall or a space designed for public gatherings or performances, possibly inspired by classical or neoclassical styles.

The temporal transition in the video is interesting as it captures a moment of action (the surfers riding the wave) within a stationary, non-moving environment (the interior space). This creates a surreal effect, blending the dynamic motion of the ocean with the static elegance of a building interior. The image is a blend of two disparate subjects—the exhilarating sport of surfing and the serene grandeur of architectural design—into a single, captivating composition.

#### LLaVA-NeXT-Video

The video depicts a large wave crashing inside a building, with a surfer riding the wave. The surfer is positioned in the center of the frame, skillfully navigating the wave's crest. The wave is massive, filling the majority of the space from the top to the bottom of the frame, with its white foam and water spray creating a dynamic and powerful visual effect. The background of the scene is a grand hall with high ceilings and ornate architecture, featuring arches and columns that add a sense of grandeur to the setting. The lighting is dim, with the focus on the surfer and the wave, casting shadows and highlighting the contours of the wave's movement. The camera captures the surfer from a low angle, emphasizing the height of the wave and the surfer's skill in maintaining balance. As the wave begins to break, the surfer is seen riding it towards the right of the frame, creating a sense of grandeur to the crashing wave is prominent, adding to the immersive experience. The video concludes with a shot of the surfer disappearing from view as the wave subsides, leaving the grand hall.

We illustrate two examples to demonstrate the superiority of DPO. Texts of interest are highlighted in blue, while parts that might contain hallucinations are marked in red

## LLaVA-NeXT Video

Takeaway message 3: Our LLaVA-NeXT-Video 34B model achieves SoTA performance on the recently proposed, most comprehensive diagnosis benchmark: Video-MME.

| Models                           | LLM    | LLM   Short (%) |           | Mediu      | edium (%)  |             | Long (%)    |          | ll (%)  |  |
|----------------------------------|--------|-----------------|-----------|------------|------------|-------------|-------------|----------|---------|--|
| WOULD                            | Params | w/o subs        | w/ subs   | w/o subs   | w/ subs    | w/o subs    | w/ subs     | w/o subs | w/ subs |  |
| Open & Closed-source Image MLLMs |        |                 |           |            |            |             |             |          |         |  |
| Qwen-VL-Chat [5]                 | 7B     | 46.4            | 47.1      | 38.1       | 39.8       | 38.0        | 38.3        | 40.9     | 41.7    |  |
| Qwen-VL-Max [5]                  | -      | 56.5            | 58.3      | 49.9       | 49.8       | <b>49.0</b> | 46.9        | 51.8     | 51.7    |  |
| InternVL-Chat-V1.5 [9]           | 20B    | 61.2            | 62.4      | 47.3       | 50.0       | 46.0        | 47.0        | 51.5     | 53.2    |  |
| Open-source Video MLLMs          |        |                 |           |            |            |             |             |          |         |  |
| Video-LLaVA [28]                 | 7B     | 45.9            | 47.1      | 38.1       | 40.2       | 37.3        | 39.6        | 40.4     | 42.3    |  |
| VideoChat2 [24]                  | 7B     | 38.2            | 41.6      | 33.2       | 34.3       | 29.7        | 31.9        | 33.7     | 35.9    |  |
| ST-LLM [33]                      | 7B     | 47.0            | 49.9      | 36.9       | 42.2       | 31.8        | 37.3        | 38.6     | 43.2    |  |
| Chat-UniVi-V1.5 [19]             | 7B     | 46.3            | 51.4      | 40.3       | 45.2       | 36.9        | 42.3        | 41.2     | 46.3    |  |
| LLaVA-NeXT-Video [68]            | 34B    | 63.1            | 66.4      | 51.1       | 53.2       | 44.6        | <b>48.7</b> | 52.5     | 56.0    |  |
|                                  |        |                 | Closed-so | ource MLLN | <b>I</b> s |             |             |          |         |  |
| GPT-4V [45]                      | -      | 71.4            | 74.5      | 56.5       | 59.3       | 54.2        | 57.2        | 60.7     | 63.7    |  |
| GPT-40 [46]                      | -      | 77.1            | 77.5      | 62.1       | 63.0       | 59.2        | 56.7        | 66.2     | 65.8    |  |
| Gemini 1.5 Pro [51]              | -      | 82.3            | 84.7      | 75.3       | 82.6       | 67.5        | 76.3        | 75.7     | 81.6    |  |

Info for LLaVA-NeXT Video:

1. Technical report: <u>https://llava-vl.github.io/blog/2024-04-30-llava-next-video/</u> 2. Model and code: https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file

## **LMMs-Lab Team and Information**

#### Student Team

- Bo Li, PhD Student, NTU, Singapore
- Yuanhan Zhang, PhD Student, NTU, Singapore
- Peiyuan Zhang, Research Assistant, NTU -> PhD Student, UCSD
- Kaichen Zhang, Undergraduate Student, NTU, Singapore
- Fanyi Pu, Undergraduate Student, NTU, Singapore
- Kairui Hu, Undergraduate Student, NTU, Singapore
- Shuai Liu, MS Student, NTU, Singapore
- Jingkang Yang, PhD Student, NTU, Singapore

#### Advisor/Faulty Team

- Chunyuan Li, ByteDance
- Ziwei Liu, Assistant Professor, NTU, Singapore



Github



Huggingface



LMMs-Lab Website



GitHub

# LMMs-Lab

Feeling and building multimodal intelligence





HuggingFace



LMMs-Lab Website