

Deep Learning Human-centric Representation in the Wild

Ziwei Liu

The Chinese University of Hong Kong University of California, Berkeley

Human-centric Analysis

Human-centric Analysis (I)

Face Understanding

Human-centric Analysis (II)

Fashion Understanding

Human-centric Analysis (III)

Scene Understanding

Human-centric Analysis (IV)

Motion Understanding

Part I: Deep Face Understanding

"Deep Learning Face Attributes in the Wild", ICCV 2015

• Problem

Arched Eyebrows? Big Eyes?

Receding Hairline? Mustache?

• Challenges

HOG (landmarks) + SVM

Motivation

CelebA

- 200,000 images
- 40 attributes
- 10,000 identities
- 1 bounding box
- 5 landmarks

Face Localization Nets (LNets)

• Pipeline

joint face localization and attribute prediction using only imagelevel attribute tags

• Rich attributes tags enable accurate face localization

Maximum Score

• Rich attributes tags enable accurate face localization

Original Image Response Map priceling SIYLE CENTRES IN COLONIA TRES 5 attributes

• Face localization performance on CelebA

• Face localization performance on MobileFace

• Pre-training with identities discovers semantic concepts

Low Resp. High Resp. Low Resp. High Resp. Hair Color Gender (a.1)(a.2)(a.3)Age (a.4) Race (a.5)Face Shape (a.6) Eye Shape

• Pre-training with identities discovers semantic concepts

Race (Neuron #131)

• Fine-tuning with attributes expands semantic concepts

• Fine-tuning with attributes expands semantic concepts

Thick Lip (Neuron #152)

• Attribute recognition performance (40 attributes)

	CelebA (200K)	LFWA (13K)
FaceTracer	81%	74%
PANDA-w	79%	71%
PANDA-1	85%	81%
SC+ANet	83%	76%
LNets+ANet(w/o)	83%	79%
LNets+ANet	87%	84%

Running Time: LNets (35ms), ANet (14ms)

• Performance on unseen attributes (30 attributes)

Part II: Deep Fashion Understanding

"DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations", CVPR 2016

"Fashion Landmark Detection in the Wild", ECCV 2016

Challenges

Face Variations

Cloth Variations

Overall Pipeline

Clothes Detection

Overall Pipeline

Clothes Alignment

Overall Pipeline

Clothes Recognition

DeepFashion

- 800,000 images
- 50 categories
- 1,000 attributes
- 40,000 identities
- 1 bounding box
- 8 landmarks

A set of fashion landmarks

Collars Cuffs Waistlines Hemlines

• • •

More challenging than human pose estimation

Geometry Appearance

Pipeline

Reduce variations by pseudo-labels

Obtain codebook by k-means clustering in label space

Performance

More effective representation

Clothes Alignment

Demo

The interplay between identities and attributes

PID: 2000077658 (Forever21)

Ringer Tee (WOMEN)

FashionNet

End-to-end System

FashionNet

Forward/Backword Pass

Attributes are noisy and imbalanced

$$J = \sum_{i=1}^{n} \sum_{j=1}^{c_{+}} \sum_{k=1}^{c_{-}} \max(0, 1 - f_{j}(\boldsymbol{x}_{i}) + f_{k}(\boldsymbol{x}_{i}))$$

Multi-label Ranking Loss

The number of identities are huge

In-shop Clothes Retrieval

Consumer-to-shop Clothes Retrieval

Applications

Similar Style Retrieval

Cloth Spotting in Video

Street-to-shop

Fashion Assistant

0

Part III: Deep Scene Understanding

"Semantic Image Segmentation via Deep Parsing Network", ICCV 2015 (oral)

"Not All Pixels Are Equal: Difficulty-aware Semantic Segmentation via Deep Layer Cascade", CVPR 2017 (spotlight)

Problem

Problem

Previous Attempts

SVM

SVM + MRF

CNN + MRF ?

Learned Features✓Pairwise Relations✗Joint Training-# Iterations-

Fully Convolutional Network [Long et al. CVPR 2015]

Learned Features	\checkmark
Pairwise Relations	\checkmark
Joint Training	X
# Iterations	10

DeepLab [Chen et al. ICLR 2015]

Learned Features	\checkmark
Pairwise Relations	\checkmark
Joint Training	\checkmark
# Iterations	10

CRF as RNN [Zheng et al. ICCV 2015]

Deep Parsing Network (DPN)

Learned Features	\checkmark
Pairwise Relations	\checkmark
Joint Training	\checkmark
# Iterations	1

Contributions

• Extend MRF to incorporate richer relationships

• Formulate mean field inference of high-order MRF as CNN

• Capable of joint training and one-pass inference

Richer Relationships in DPN

 Z_1

Triple Penalty

Pairwise Term

Pa

$$ir = \sum_{i,j} cost(i) * \sum_{\mathbf{Z}} diss(i,j;\mathbf{Z})$$

Triple Penalty

 Z_n

Richer Relationships in DPN

Solve High-order MRF as Convolution

Pairwise Term

$$Pair = \sum_{i,j} \sum_{k} cost_{k}(i,j) * \sum_{z} diss(i,j;z)$$

$$Mean \ Field \ Solver$$

$$p_{i} \propto exp \left\{ -\left(Unary_{i} + \sum_{j} Pair_{i,j} * p_{j}\right) \right\}$$

Solve High-order MRF as Convolution

Iterative Updating Formula

$$p_i \propto exp \left\{ -\left(Unary_i + \sum_j Pair_{i,j} * p_j \right) \right\}$$

Summation Convolution

 $Pair_{i,j}$: Different Types ofLocal and Global Filters

Deep Parsing Network

Deep Parsing Network

Original Image

Ground Truth

Unary Term

Triple Penalty

Label Contexts

Joint Tuning

Overall Performance (Published Results)

FCN	62.2
DeepLab [†]	73.9
CRFasRNN [†]	74.7
$BoxSup^{\dagger}$	75.2
DPN [†]	77.5

(PASCAL VOC 2012 Challenge test set)

Label Contexts Learned 9 50 bkg areo bilke bird boat bottle bus car cat chair cow table dog horse mbike p**enson** plant sheep sofa train tv

Label Contexts Learned

chair : person

person : mbike

favor

penalty

Challenging Case

Problem

Input Video

State-of-the-art Method (4 FPS)

Deep Layer Cascade (17 FPS)

State-of-the-art Method (4 FPS)

Why Slow?
Very Deep Backbone Network
High Resolution Feature Map

Fully Convolutional Network

Motivation

Image

Easy Region

Moderate Region

Hard Region

Contemporary Model

Image

Stem 5×IRNet-A Reduction-A 10×IRNet-B Reduction-B 5×IRNet-C Fully-Connected Softmax

Deep Layer Cascade

Deep Layer Cascade

Deep Layer Cascade

Region Convolution

Convolution

Region Convolution

Region Convolution with Residual

Performance

PASCAL VOC 2012

	mIoU	FPS (Backbone Network)
DPN	77.5	5.7
Adelaide	79.1	-
Deeplab-v2	79.7	7.1
LC(w/o COCO)	80.3	147
LC(with COCO)	82.7	14. /

(PASCAL VOC 2012 Challenge test set)

Stage Visualization

Part IV: Deep Motion Understanding

"Video Frame Synthesis using Deep Voxel Flow", ICCV 2017 (oral)

Video Frame Synthesis

• Problem

Video interpolation/ extrapolation

Video Frame Synthesis

- Challenge
 - 1. Complex motion (camera motion & scene motion)
 - 2. High-res images (1280 * 720)

Voxel Flow

symmetric bi-directional flows

Voxel Flow

selection mask between frames

Voxel Flow

differentiable bilinear sampling

Deep Voxel Flow

• Mechanism

Differentiable spatiotemporal sampling

(b) Backward Pass

Deep Voxel Flow

Motivation

Combining the strength of flow-based and NN-based methods

Multi-scale Deep Voxel Flow

Multi-scale Voxel Flow

• Advantages

(a) 2D Flow + Mask

(d) Difference Image

(b) Voxel Flow

(c) Multi-scale Voxel Flow

(e) Projected Motion Field (f) Projected Selection Mask

Multi-scale Voxel Flow

Full Image Texture Regions Motion Regions Large Motion Regions • Ablation Study 32 30.5 31 PSNR 31 29.5 28.5 29 28 27.5 2D Flow+Mask Multi-scale VF **2D Flow+Mask** Voxel Flow Multi-scale VF Voxel Flow (a) Appearance (b) Motion -Beyond MSE - EpicFlow - Ours -Beyond MSE -EpicFlow -Ours 30 29.5 29 29 28 28 **NNS** 28.5 27 27.5 Step 1 Step 1 Step 2 Step 2 Step 3 Step 3 (c) Interpolation (d) Extrapolation

• UCF-101

• UCF-101

• KITTI

• KITTI

Feature Learning

• Self-supervised Learning

Method	EPE	Method	Acc.	
LD Flow [3]	12.4	Random	39.1	
FlowNet [5]	9.1	Unsup. Video [30]	43.8	
EpicFlow [22]	3.8	ImageNet [14]	63.3	
Ours (w/o ft.)	14.6	Ours (w/o ft.)	48.7	
Ours	9.5	Ours	52.4	
Flow estimation		Action Recogn	Action Recognition	

Real-life Applications

Spatio-temporal Coherence

Real-life Applications

• User Study

Real-life Applications

Video Frame Synthesis using Deep Voxel Flow

Ziwei Liu¹, Raymond Yeh², Xiaoou Tang¹, Yiming Liu³, Aseem Agarwala³

¹The Chinese University of Hong Kong ²University of Illinois at Urbana-Champaign ³Google

Conclusions & Future Work

- In-the-Wild Handling: deformable objects, complex scenes
- Heter. Supervisions: identity, attribute, landmark, self-sup
- Structural Deep Learning: semantic, geometry, spatio-temporal

Product Transfer

With Blink for Windows Phone 8, you'll never miss the best shot or the action. Blink captures a burst of images before you even press the shutter, and continues to capture pictures after you've taken your shot. Save and share the shot you like best. And better yet, save a short animated Blink and share it to Facebook, Twitter, or Blink.so.cl.

With Blink, a few simple finger swipes lets you find the perfect shot, and create a short animated Blink to share with your friends or the world.

Never miss a shot again. Blink captures a burst of pictures so you can choose the best one.
Blink also creates amazing sequence animations that you can edit and share.

Microsoft Blink

SenseTime FashionEye

Google Clips

Collaborators

Xiaoxiao Li

Sijie Yan

Shi Qiu

Ping Luo

Chen Change Loy

Xiaogang Wang

Xiaoou Tang

Thanks!

Science is what we understand well enough to explain to a computer. Art is everything else we do.

Homepage: <u>https://liuziwei7.github.io/</u>