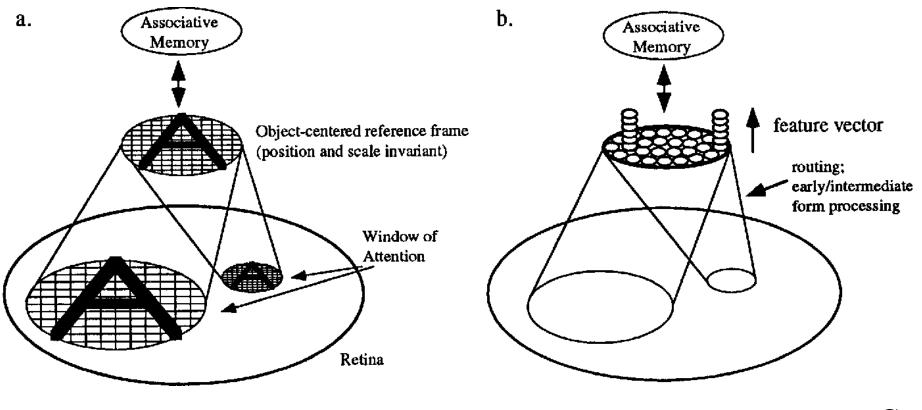


The Glimpse of Detectron: Dynamic Forwarding and Routing in Modern Detectors

Ziwei Liu

Multimedia Lab (MMLAB) The Chinese University of Hong Kong

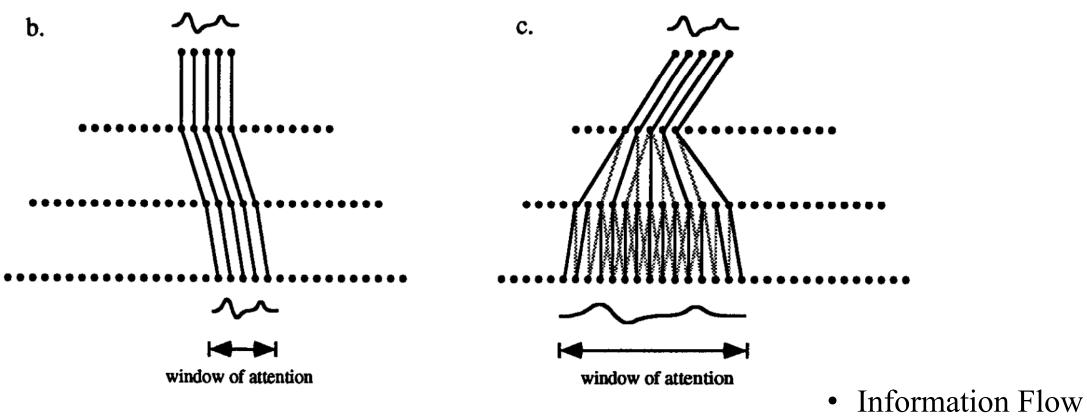
Dynamic Forwarding



- Content-Aware
- Resolution-Adaptive

A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information

Dynamic Routing



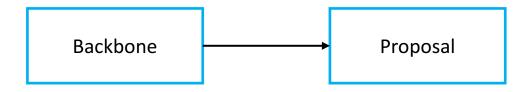
• Selection & Fusion

A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information

1. We proposed a new backbone **FishNet**. (NIPS 2018)

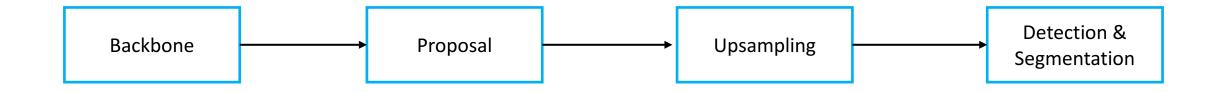
Backbone

- 1. We proposed a new backbone **FishNet**. (NIPS 2018)
- 2. We designed a **feature guided anchoring** scheme to improve the average recall (AR) of RPN by 10 points. (CVPR 2019)



- 1. We proposed a new backbone **FishNet**. (NIPS 2018)
- 2. We designed a **feature guided anchoring** scheme to improve the average recall (AR) of RPN by 10 points. (CVPR 2019)
- 3. We proposed a new upsampling operator **CARAFE**. (ICCV 2019)

- 1. We proposed a new backbone **FishNet**. (NIPS 2018)
- 2. We designed a **feature guided anchoring** scheme to improve the average recall (AR) of RPN by 10 points. (CVPR 2019)
- 3. We proposed a new upsampling operator **CARAFE**. (ICCV 2019)
- 4. We developed a **hybrid cascading and branching** pipeline for detection and segmentation. (CVPR 2019)



FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction (NIPS 2018)

Motivation

- The basic principles for designing CNN for region and pixel level tasks are **diverging** from the principles for image classification.
- Unify the advantages of networks designed for region and pixel level tasks in obtaining deep features with high-resolution.

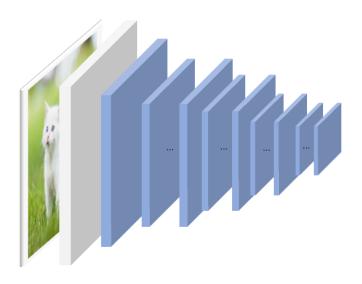
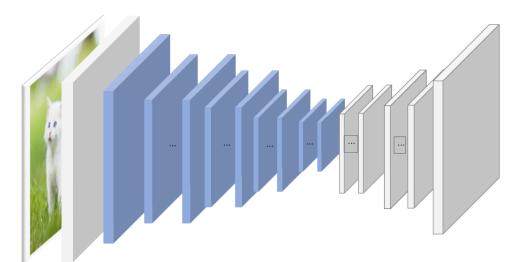


Image classification

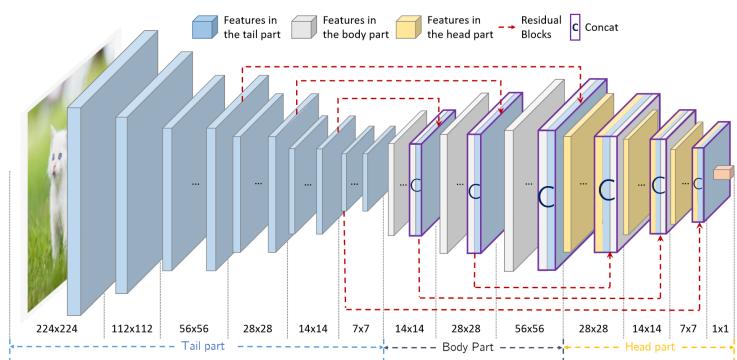


Region and pixel level tasks

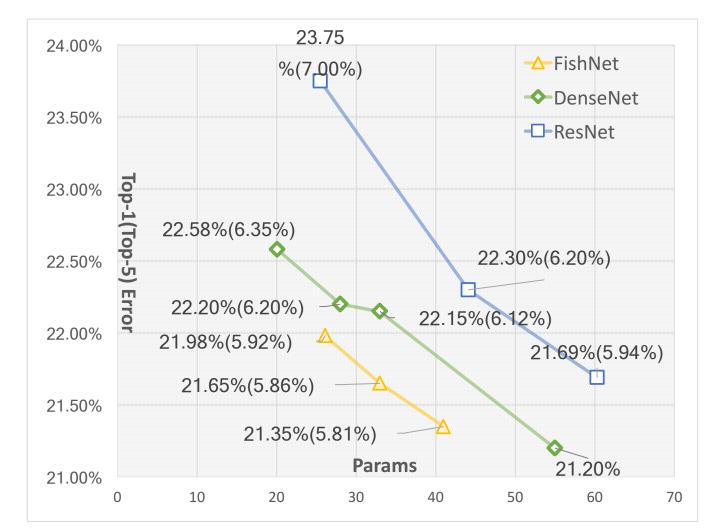
Segmentation, pose estimation, detection ...

Motivation

- Traditional consecutive down-sampling will prevent the very shallow layers to be directly connected till the end, which may exacerbate the vanishing gradient problem.
- Features from varying depths could be used for **refining** each other.



FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction, NIPS 2018.



Top-1 Classification Error on ImageNet

MS COCO val-2017 detection and instance segmentation results.

	Instance Segmentation	Object Detection
Backbone	$AP^s/AP^s_S/AP^s_M/AP^s_L$	$AP^d/AP^d_S/AP^d_M/AP^d_L$
ResNet-50 [3]	34.5/15.6/37.1/52.1	38.6/22.2/41.5/50.8
ResNet-50 [†]	34.7/18.5/37.4/47.7	38.7/22.3/42.0/51.2
ResNeXt-50 $(32x4d)^{\dagger}$	35.7/19.1/38.5/48.5	40.0/23.1/43.0/52.8
FishNet-188	37.0 /19.8/40.2/50.3	41.5 /24.1/44.9/55.0
vs. ResNet-50 [†]	+2.3/+1.3/+2.8/+2.6	+2.8/+1.8/+2.9/+3.8
vs. ResNeXt-50 [†]	+1.3/+0.7/+1.7/+1.8	+1.5/+1.0/+1.9/+2.2

- Fish tail, fish body, fish head
- More flexible information flow
- Adaptive feature resolution reservation

Region Proposal by Guided Anchoring (CVPR 2019)

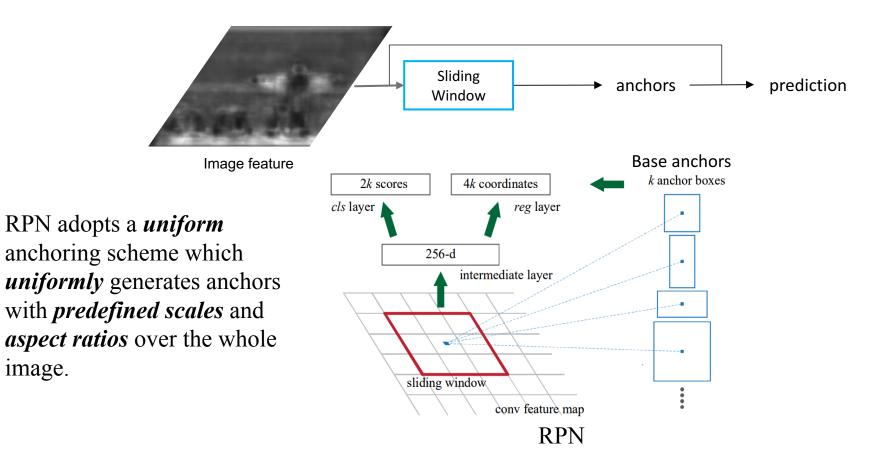
- We introduce a Guided Anchoring Scheme to generate anchors and build up a Guided Anchoring Region Proposal Network (GA-RPN)
- GA-RPN achieves 9.1% higher average recall (AR) on MS COCO with 90% fewer anchors than the RPN baseline.
- GA-RPN improves Fast R-CNN, Faster R-CNN and RetinaNet by over 2.2%, 2.7% and 1.2%.

Baseline

image.



Region Proposal Network (RPN)



Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.

Baseline

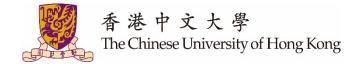
Uniform anchoring scheme has intrinsic drawbacks:

- Most of generated anchors are irrelevant to the objects. (less than 0.01% anchors are positive samples)
- The conventional method are unaware of object shapes.

Baseline

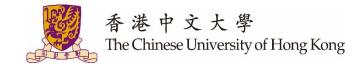
How to overcome such drawbacks:

- Anchors should be distributed on feature maps considering how likely the locations contain objects.
- Anchor shapes should be predicted rather than pre-defined.

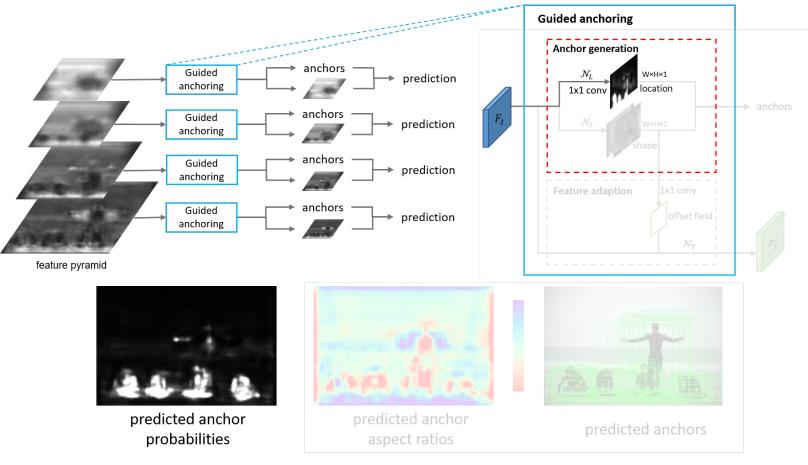


Guided Anchoring Component has following steps:

- The first step identifies the locations where objects are likely to exist.
- The second stage predicts shapes of anchors.
- In addition, we further introduce a feature adaption module to refine the features considering anchor shapes.



Anchor Location Prediction

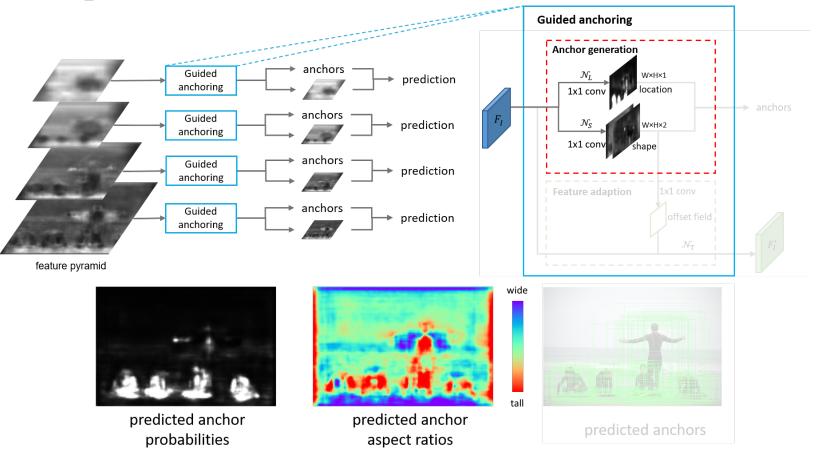




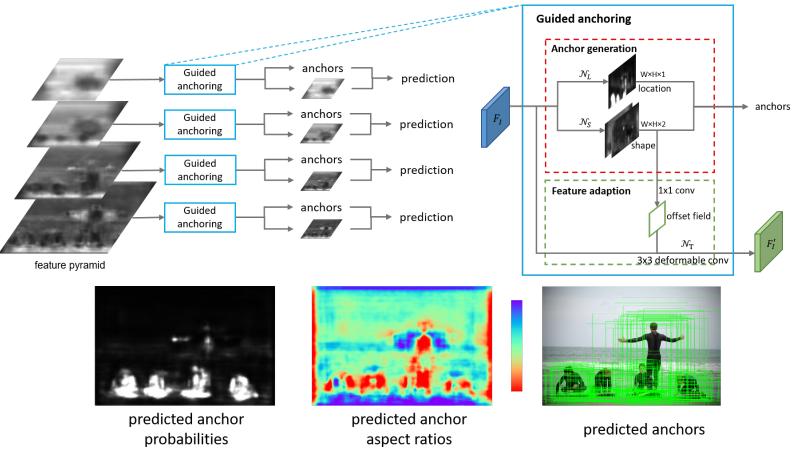
Guided Anchoring Component has following steps:

- The first step identifies the locations where objects are likely to exist.
- The second stage predicts shapes of anchors.
- In addition, we further introduce a feature adaption module to refine the features considering anchor shapes.

Anchor Shape Prediction



Feature Adaption

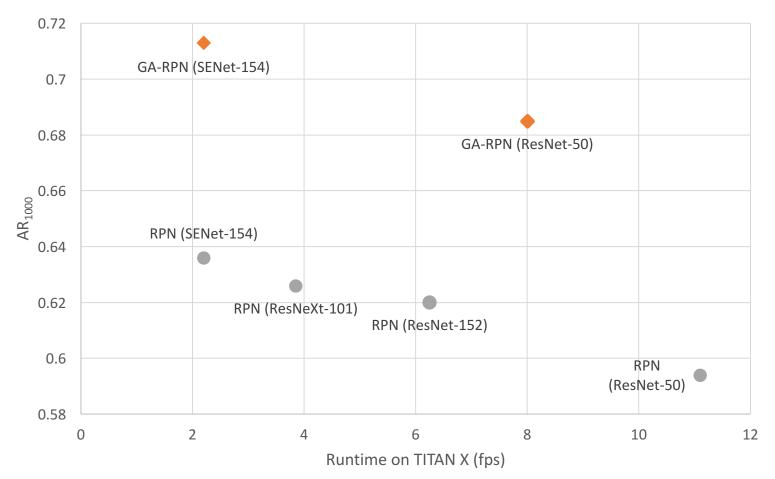


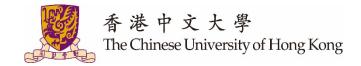
Why feature adaptive?

A feature and an anchor on the same location should be consistent.

Method	AR ₁₀₀	AR ₃₀₀	AR ₁₀₀₀	AR _S	AR_{M}	AR_L
RPN	47.5	54.7	59.4	31.7	55.1	64.6
GA-RPN w/o F.A.	54.0	60.1	63.8	36.7	63.1	71.5
GA-RPN + F.A.	59.2	65.2	68.5	40.9	67.8	79.0

Experiment Results



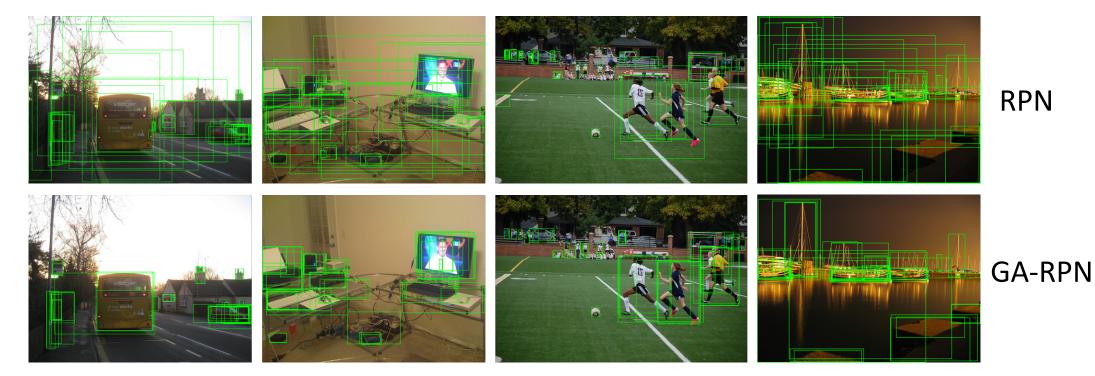


Experiment Results

Detector	AP	AR ₅₀	AP_{75}	AP _S	AP _M	AP_L
Fast R-CNN	37.1	59.6	39.7	20.7	39.5	47.1
GA-Fast-RCNN	39.4	59.4	42.8	21.6	41.9	50.4
Faster R-CNN	37.1	59.1	40.1	21.3	39.8	46.5
GA-Faster-RCNN	39.8	59.2	43.5	21.8	42.6	50.7
RetinaNet	35.9	55.4	38.8	19.4	38.9	46.5
GA-RetinaNet	37.1	56.9	40.0	20.1	40.1	48.0

Detection results on MS COCO 2017 test-dev with ResNet-50 backbone

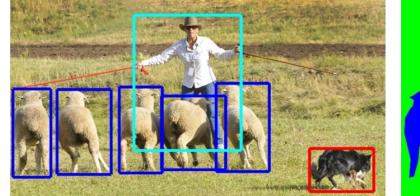
Examples



- From sliding window to sparse, non-uniform distribution
- From predefined shapes to learnable, arbitrary shapes
- Refine features based on anchor shapes

CARAFE: Content-Aware ReAssembly of Features (ICCV 2019 Oral)

- Feature upsampling is a key operation in a number of modern convolutional network architectures, e.g. Feature Pyramids Networks, U-Net, Stacked Hourglass Networks.
- Its design is critical for dense prediction tasks such as object detection and semantic/instance segmentation.



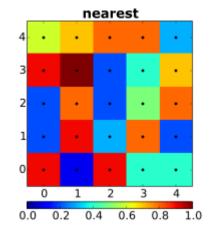
Object detection

Semantic segmentation

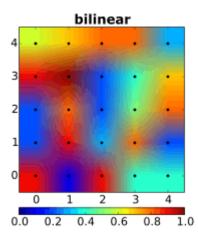
Instance segmentation

Background





Nearest Neighbor (NN)

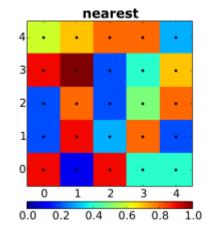


Interpolations leverage distances to measure the correlations between pixels, and hand-crafted upsampling kernels are used. (Pros: low cost / Cons: handcrafted upsampling kernels)

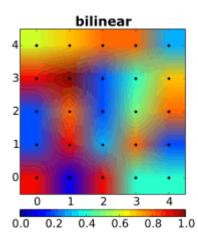
Bilinear

Background

香港中文大學 The Chinese University of Hong Kong



Nearest Neighbor (NN)



Bilinear

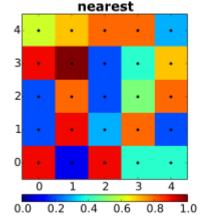
Interpolations leverage distances to measure the correlations between pixels, and hand-crafted upsampling kernels are used. (Pros: low cost / Cons: handcrafted upsampling kernels)

Deconvolution (Transposed Convolution)

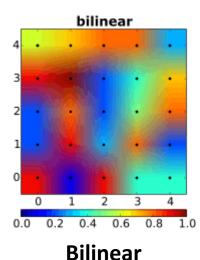
Deconvolution is an inverse operator of a convolution, which uses a fixed kernel for all samples within a limited receptive field. (Pros: learnable kernel / Cons: not content-aware, limited receptive field)

Background

香港中文大學 The Chinese University of Hong Kong



Nearest Neighbor (NN)



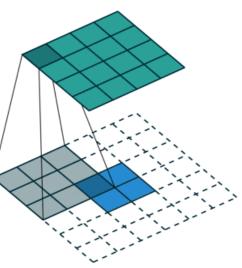
Interpolations leverage distances to measure the correlations between pixels, and hand-crafted upsampling kernels are used. (Pros: low cost / Cons: hand-

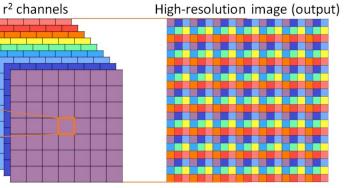
crafted upsampling kernels)

Deconvolution (Transposed Convolution)

Deconvolution is an inverse operator of a convolution, which uses a fixed kernel for all samples within a limited receptive field. (Pros: learnable kernel / Cons: not content-aware, limited receptive field)

Pixel Shuffle Pixel Shuffle reshapes depth on the channel space into width and height on the spatial space. It brings highly computational overhead when expanding the channel space.





(Pros: learnable kernel/ Cons: not content-aware, limited receptive field, high cost)

Content-Aware ReAssembly of FEatures (CARAFE) is a universal, lightweight and highly effective upsampling operator.

- Large field of view. CARAFE can aggregate contextual information within a large receptive field.
- **Content-aware handling.** CARAFE enables instance-specific content-aware handling, which generates adaptive kernels on-the-fly.
- Lightweight and fast to compute. CARAFE introduces little computational overhead and can be readily integrated into modern network architectures

Content-Aware ReAssembly of FEatures (CARAFE) is a universal, lightweight and highly effective upsampling operator.

- Large field of view. CARAFE can aggregate contextual information within a large receptive field.
- **Content-aware handling.** CARAFE enables instance-specific content-aware handling, which generates adaptive kernels on-the-fly.
- Lightweight and fast to compute. CARAFE introduces little computational overhead and can be readily integrated into modern network architectures

CARAFE shows consistent and substantial gains across **object detection, instance/semantic segmentation** and **inpainting** (1.2%, 1.3%, 1.8%, 1.1db respectively) with negligible computational overhead.

CARAFE

On each location, CARAFE can leverage the **content information** of such location to predict **assembly kernels** and **assemble the features** inside a predefined nearby region.

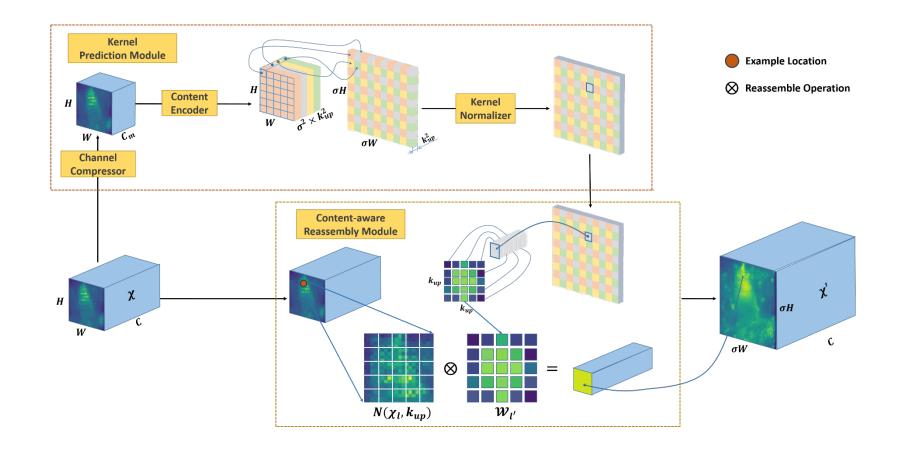
1) The first step is to predict a reassembly kernel for each destination location according to its content. ($N(X_l, k)$ is the $k \ge k$ sub-region of χ centered at the location l, i.e., the neighbor of X_l .)

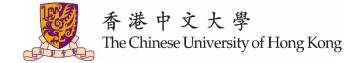
$$\mathcal{W}_{l'} = \psi(N(\mathcal{X}_l, k_{encoder})).$$

2) The second step is to reassemble the features with predicted kernels.

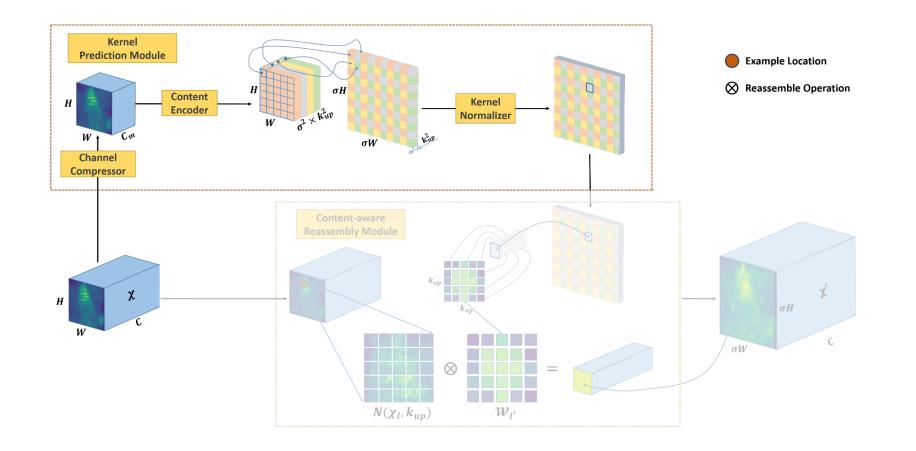
$$\mathcal{X}_{l'}' = \phi(N(\mathcal{X}_l, k_{up}), \mathcal{W}_{l'}).$$

Framework

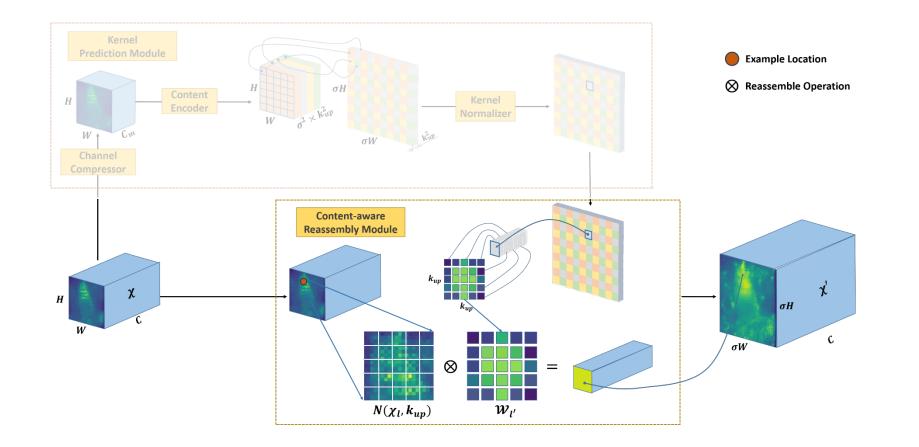




Kernel Predication Module



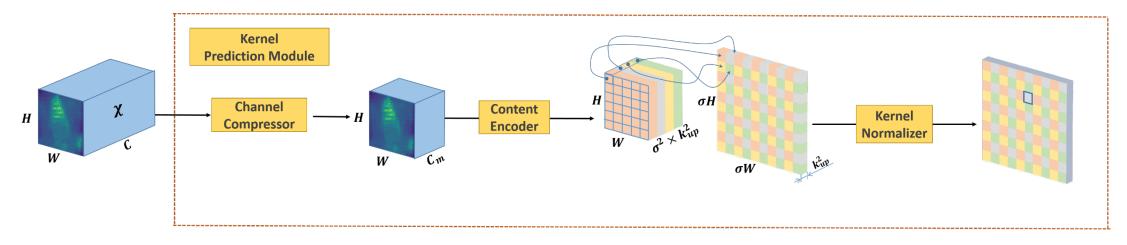
Content-aware Reassembly Module



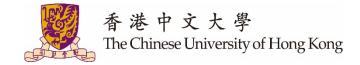


- Each source location on χ corresponds to σ^2 destination locations on χ' .
- Each destination location on χ' requires a $k_{up} \ge k_{up}$ reassembly kernel. (k_{up} is the reassembly kernel size.)

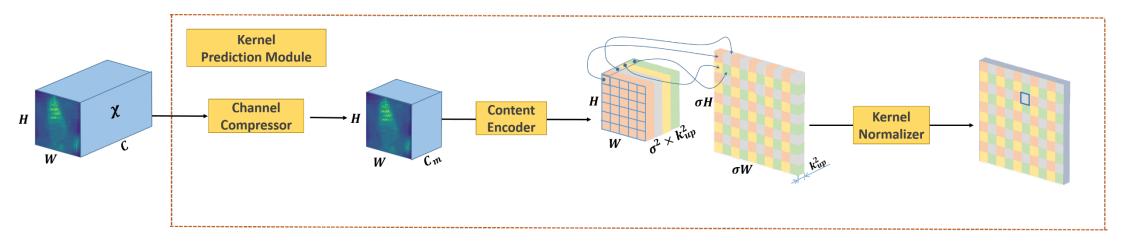
Kernel Predication Module



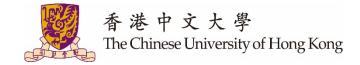
1) Channel Compressor. (1 x 1 convolution layer which compresses the input feature channel from C to Cm. The goal of this step is for speed-up without harming the performance.)



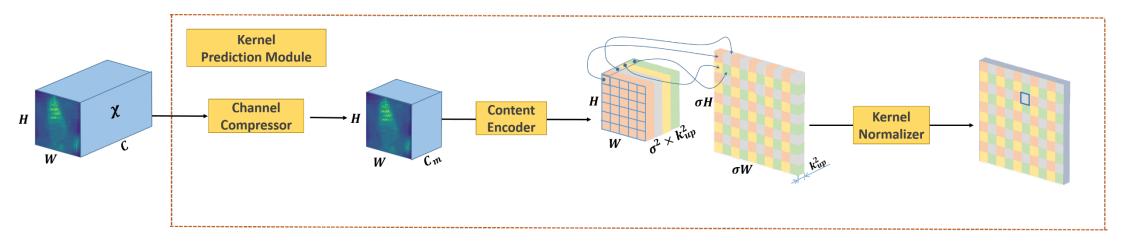
Kernel Predication Module



- 1) Channel Compressor. (1 x 1 convolution layer which compresses the input feature channel from C to Cm. The goal of this step is for speed-up without harming the performance.)
- 2) Content Encoder. (Convolution layer of kernel size $k_{encoder}$ to generate reassembly kernels based on the content of input features. An empirical formula $k_{encoder} = k_{up} 2$ is a good trade-off between performance and efficiency through our study)



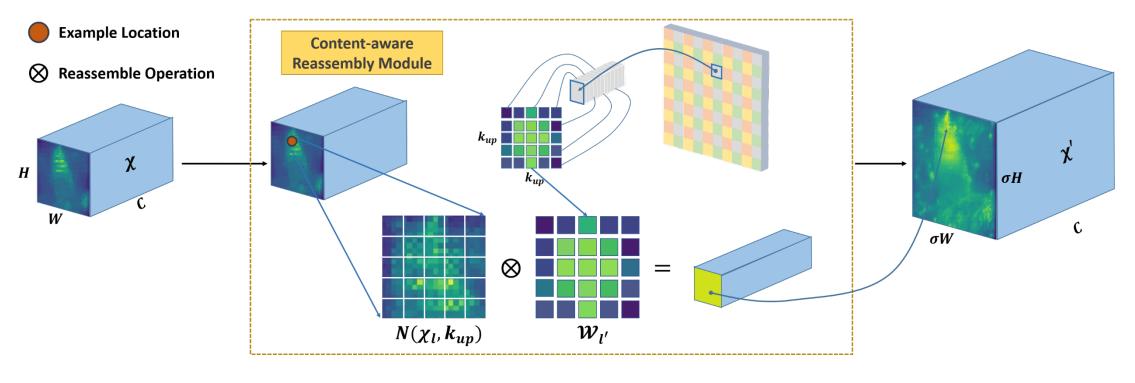
Kernel Predication Module



- 1) Channel Compressor. (1 x 1 convolution layer which compresses the input feature channel from C to Cm. The goal of this step is for speed-up without harming the performance.)
- 2) Content Encoder. (Convolution layer of kernel size $k_{encoder}$ to generate reassembly kernels based on the content of input features. An empirical formula $k_{encoder} = k_{up} 2$ is a good trade-off between performance and effificiency through our study)
- 3) Kernel Normalizer. (Each $k_{up} \ge k_{up}$ reassembly kernel is normalized with a softmax function.)



Content-aware Reassembly Module



$$\mathcal{X}'_{l'} = \sum_{n=-r}^{r} \sum_{m=-r}^{r} \mathcal{W}_{l'(n,m)} \cdot \mathcal{X}_{(i+n,j+m)}.$$

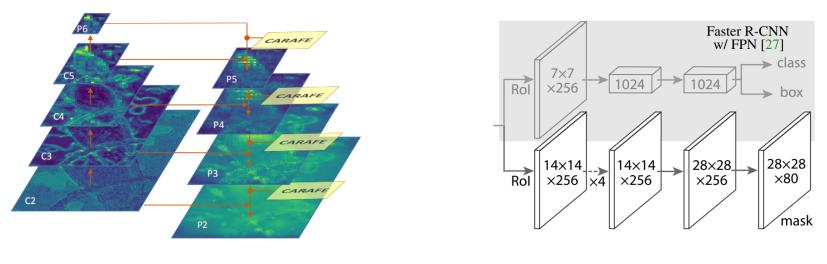
Applications

CARAFE introduces little computational overhead and can be readily integrated into modern network architectures.

- Object Detection (Faster R-CNN w/ FPN)
- Instance Segmentation (Mask R-CNN w/ FPN)
- Semantic Segmentation (UperNet)
- Image Inpainting (Global&Local, Partial Conv)

Object Detection & Instance Segmentation

- 1) Feature Pyramid Network (Faster R-CNN, Mask R-CNN)
- 2) Mask Head (Mask R-CNN)



Feature Pyramid Network (FPN)

Mask Head

Object Detection & Instance Segmentation:

Table 1: Detection and Instance Segmentation results on MS COCO 2018 test-dev.

Method	Backbone	Task	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Faster R-CNN	ResNet-50	BBox	36.9	59.1	39.7	21.5	40.0	45.6
Faster R-CNN w/ CARAFE	ResNet-50	BBox	38.1	60.7	41.0	22.8	41.2	46.9
Mask R-CNN	ResNet-50	BBox	37.8	59.7	40.8	22.2	40.7 46.8	
Wask K-CININ	ResNet-50	Segm	34.6	56.5	36.8	18.7	37.3	45.1
Mask R-CNN w/ CARAFE	ResNet-50	BBox	38.8	61.2	42.1	23.2	41.7	47.9
	ResNet-50	Segm	35.9	58.1	38.2	19.8	38.6	46.5

Semantic Segmentation:

Table 5: Semantic Segmentation results on ADE20k val. Single scale testing is used in our experiments.

Method	Backbone	mIoU	P.A.
PSPNet	ResNet-50	41.68	80.04
PSANet	ResNet-50	41.92	80.17
UperNet ³	ResNet-50	40.44	79.80
UperNet w/ CARAFE	ResNet-50	42.23	80.34

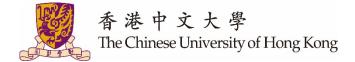


Image Inpainting:

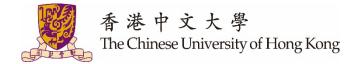
Table 7: Image inpainting results on Places val.

Method	L1(%)	PSNR(dB)
Global&Local	6.78	19.58
Partial Conv	5.96	20.78
Global&Local w/ CARAFE	6.00	20.71
Partial Conv w/ CARAFE	5.72	20.98

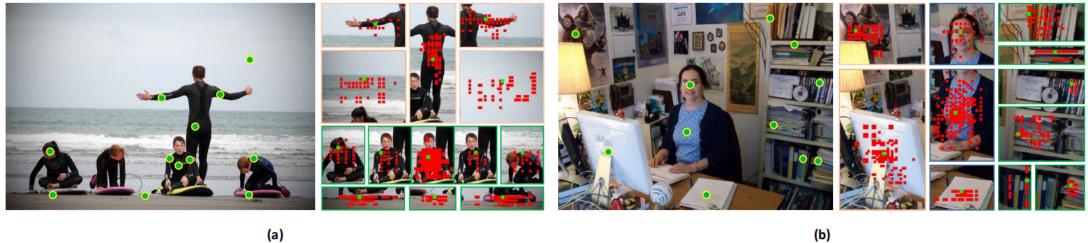
Compare with previous upsamplers:

Table 2: Detection results with Faster RCNN. Various upsampling methods are used in FPN.

Method	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	FLOPs
Nearest	36.5	58.4	39.3	21.3	40.3	47.2	0
Bilinear	36.7	58.7	39.7	21.0	40.5	47.5	8k
Nearest + Conv	36.6	58.6	39.5	21.4	40.3	46.4	4.7M
Bilinear + Conv	36.6	58.7	39.4	21.6	40.6	46.8	4.7M
Deconv [21]	36.4	58.2	39.2	21.3	39.9	46.5	1.2M
Pixel Shuffle[25]	36.5	58.8	39.1	20.9	40.4	46.7	4.7M
GUM[18]	36.9	58.9	39.7	21.5	40.6	48.1	1.1 M
S.A.[1]	36.9	58.8	39.8	21.7	40.8	47.0	28k
CARAFE	37.8	60.1	40.8	23.1	41.7	48.5	199k



How CARAFE works:



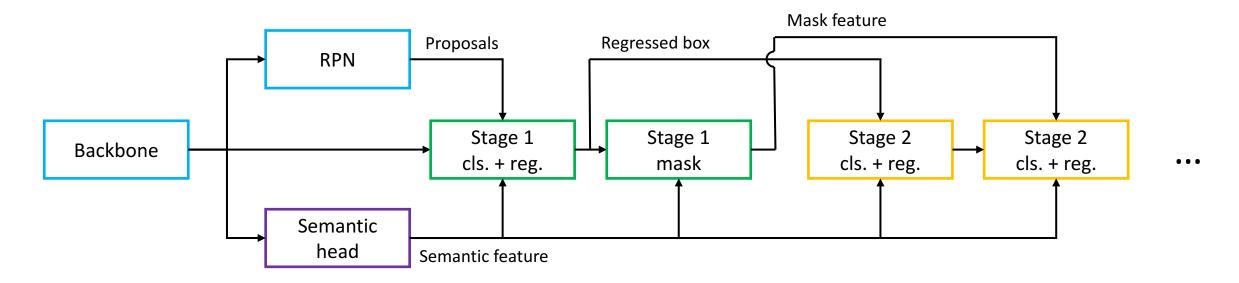
Example Locations Reassembly Center

Reassembled Units

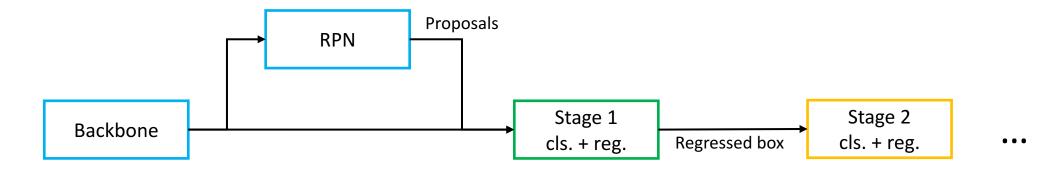
- Universal operator
- Content-aware upsampling
- Fast to compute

Hybrid Task Cascade for Instance Segmentation (CVPR 2019)

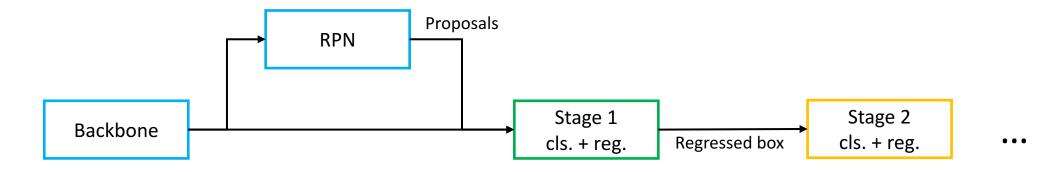
A hybrid architecture with interleaved task branching and cascade.



Baseline: Cascade R-CNN

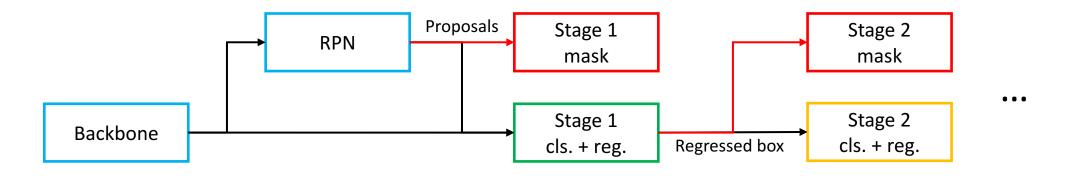


Baseline: Cascade R-CNN

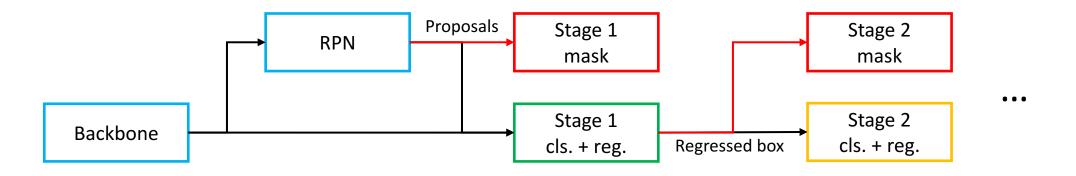


Problem: designed for detection, not segmentation

Baseline: Cascade R-CNN + Mask R-CNN

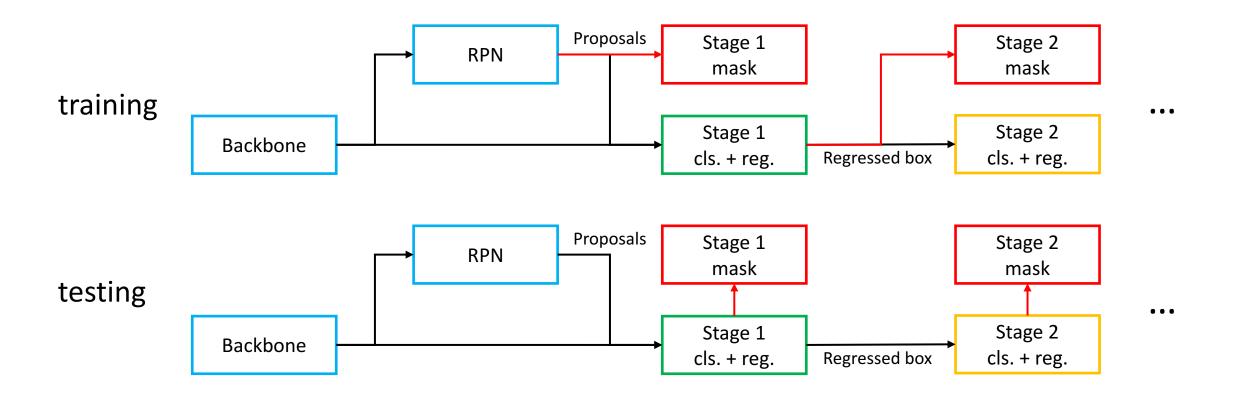


Baseline: Cascade R-CNN + Mask R-CNN

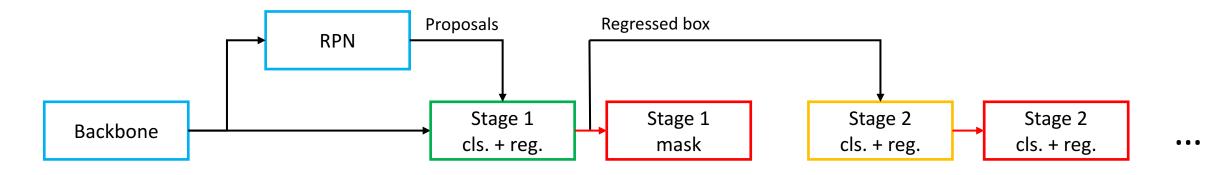


Problem: mismatch of training and testing pipeline

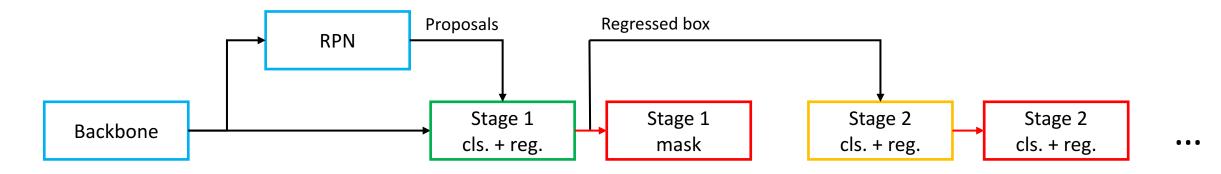
Problem: mismatch of training and testing pipeline



Task cascade: ordinal bbox prediction and mask prediction

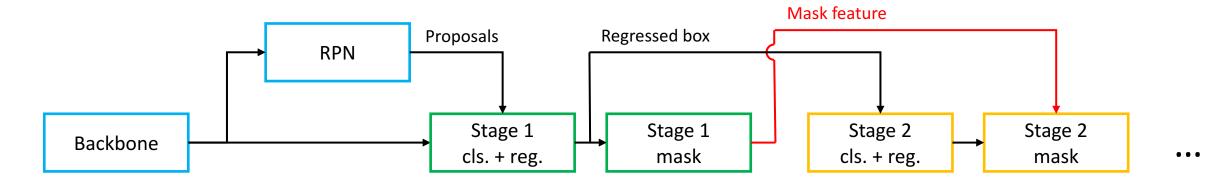


Task cascade: ordinal bbox prediction and mask prediction

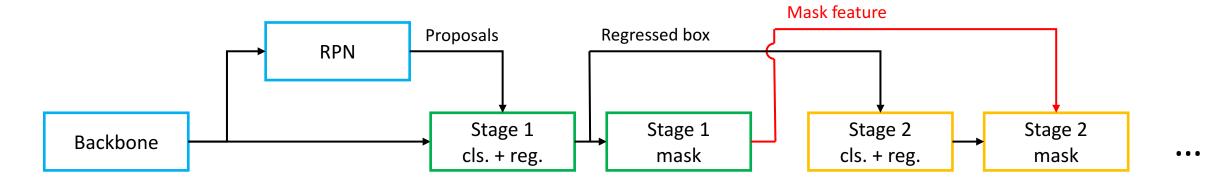


Problem: no connection between mask branches of different stages

Interleaved execution: box cascade & mask cascade

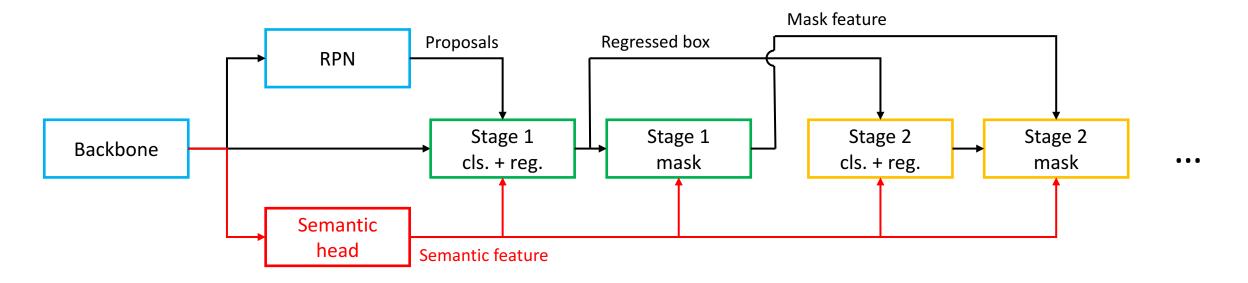


Interleaved execution: box cascade & mask cascade



Problem: contextual information is not much explored

Hybrid branching: additional semantic segmentation branch



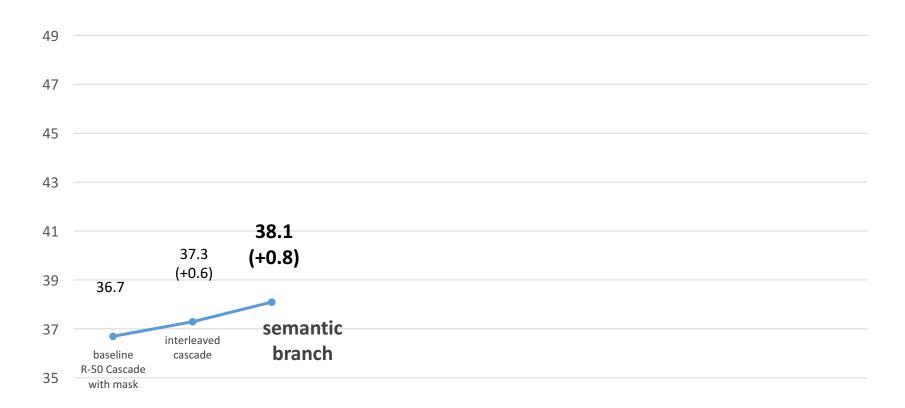
Hybrid Task Cascade

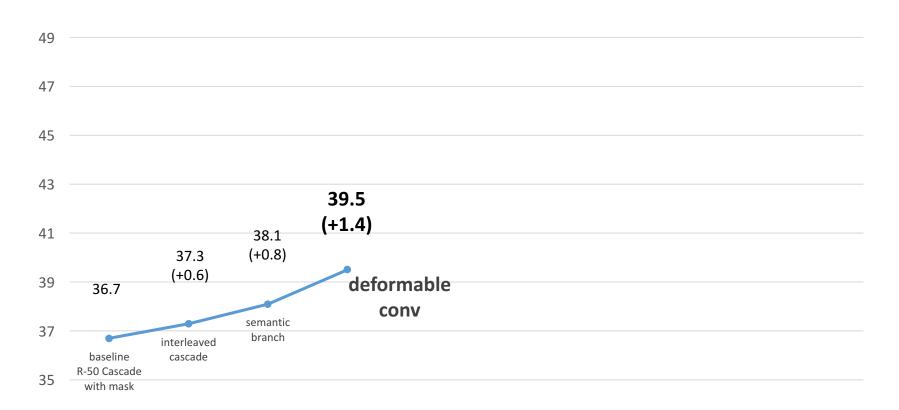
- Cascade between different tasks
- Interleaved execution
- Contextual information fusion

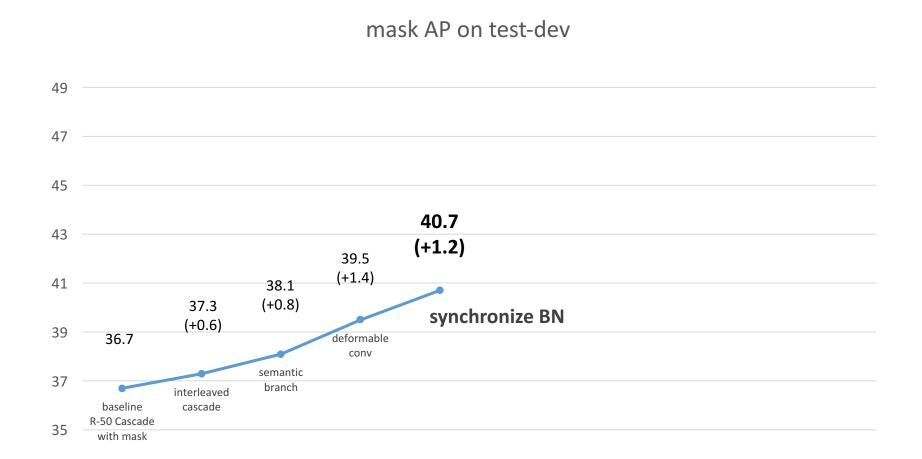
mask AP on test-dev

mask AP on test-dev

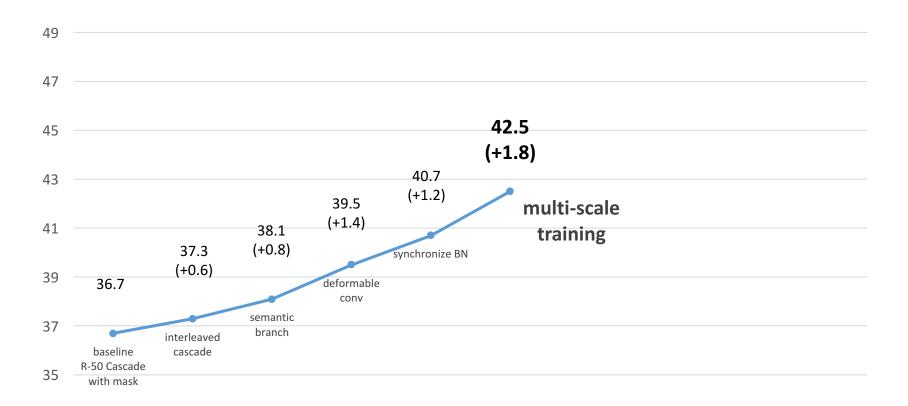
mask AP on test-dev



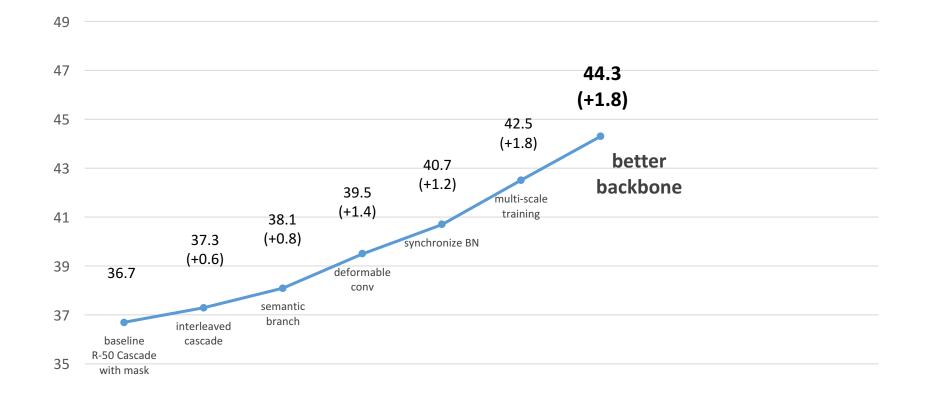




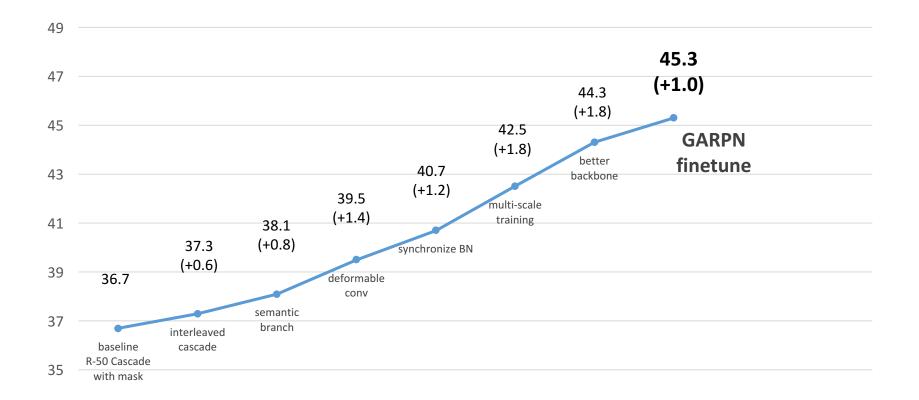
mask AP on test-dev

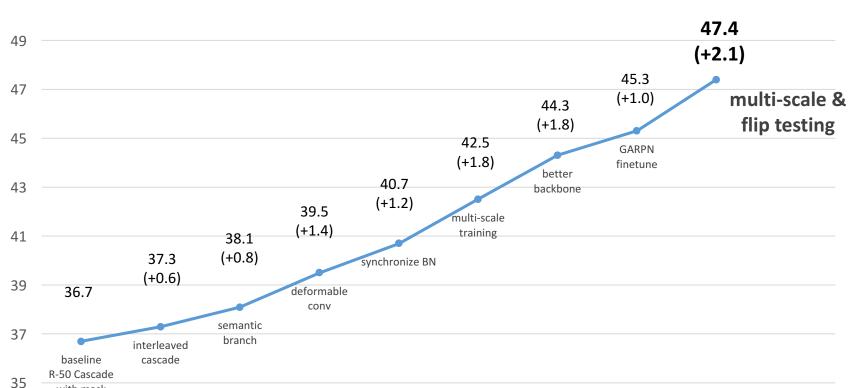


mask AP on test-dev



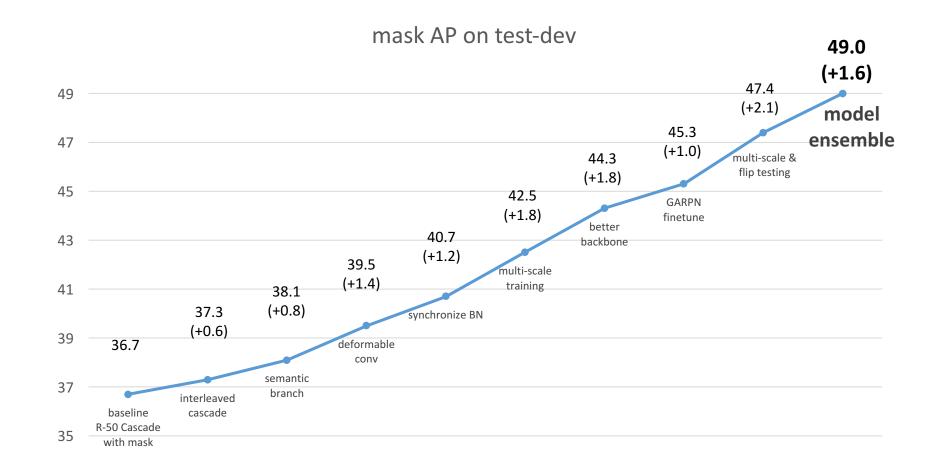
mask AP on test-dev



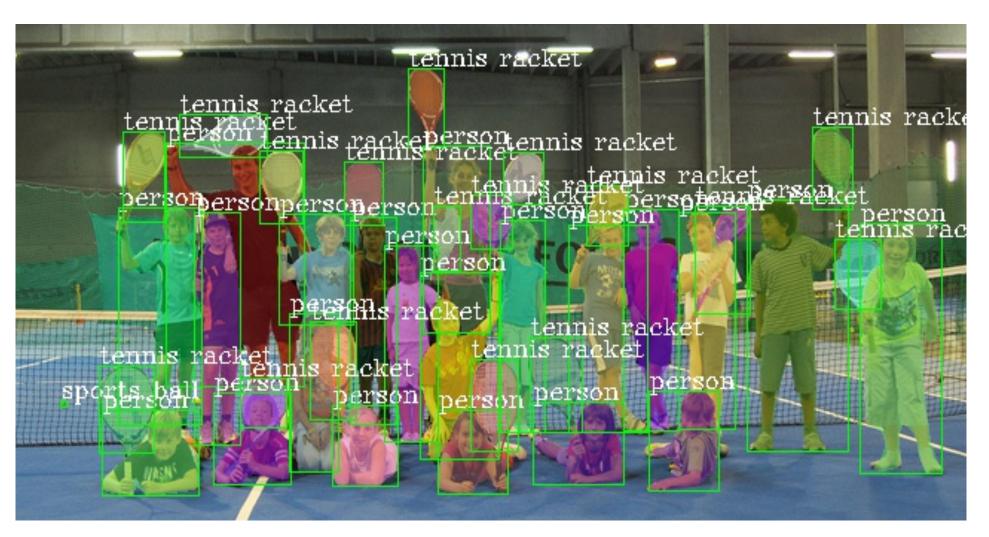


mask AP on test-dev

with mask



Visualization



mmdetection (Open-MMLAB)

Codebase

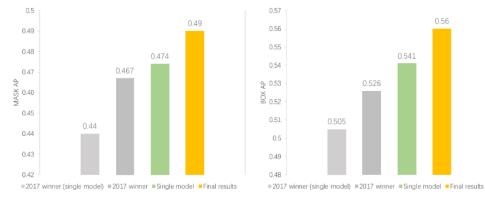
open-mmlab / mmdetection

	MMDetection	maskrcnn-benchmark	Detectron	SimpleDet
Fast R-CNN	\checkmark	\checkmark	\checkmark	\checkmark
Faster R-CNN	\checkmark	\checkmark	\checkmark	\checkmark
Mask R-CNN	\checkmark	\checkmark	\checkmark	\checkmark
RetinaNet	\checkmark	\checkmark	\checkmark	\checkmark
DCN	\checkmark	\checkmark	\checkmark	\checkmark
DCNv2	\checkmark	\checkmark		
Mixed Precision Training	\checkmark	\checkmark		\checkmark
Cascade R-CNN	\checkmark		*	\checkmark
Weight Standardization	\checkmark	*		
Mask Scoring R-CNN	\checkmark	*		
FCOS	\checkmark	*		
SSD	\checkmark			
R-FCN	\checkmark			
M2Det	\checkmark			
GHM	\checkmark			
ScratchDet	\checkmark			
Double-Head R-CNN	\checkmark			
Grid R-CNN	\checkmark			
FSAF	\checkmark			
Hybrid Task Cascade	\checkmark			
Guided Anchoring	\checkmark			
Libra R-CNN	\checkmark			
Generalized Attention	\checkmark			
GCNet	\checkmark			
HRNet	\checkmark			
TridentNet [17]				\checkmark

0.56

0.541

¥ Fork 1,705 • Watch 244 ★ Star 5,890



PyTorch @PyTorch · 12 Oct 2018

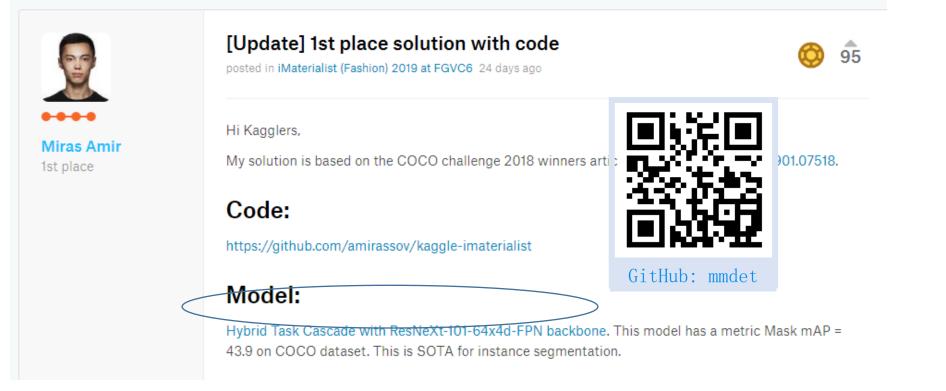
{mmdetection, mmcv} by Multimedia Lab @ CUHK - a modular, object detection and segmentation framework - fast state-of-the-art models like Mask RCNN, RetinaNet, etc. - powered the winning entry of COCO Detection 2018 challenge. github.com/open-mmlab/mmd... mmcv.readthedocs.io/en/latest/

Q 17 95 232 \square

- 10+ research institutes •
- 20+ supported methods •
- 200+ pre-trained models •

GitHub: mmdet

Codebase



The entries ranking 1, 2, and 3 of <u>iMaterialist (Fashion) 2019</u> at <u>FGVC6</u> (CVPR 2019 Workshop) are based on HTC. Here is the <u>post</u> of the winner.

Thank you!

Dynamic forwarding and routing as a computational strategy for detection and beyond