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A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information
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Overview

1. We proposed a new backbone FishNet. (NIPS 2018)

2. We designed a feature guided anchoring scheme to improve the

average recall (AR) of RPN by 10 points. (CVPR 2019)
3. We proposed a new upsampling operator CARAFE. (ICCV 2019)

4.  We developed a hybrid cascading and branching pipeline for
detection and segmentation. (CVPR 2019)
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FishNet: A Versatile Backbone
for Image, Region, and Pixel Level Prediction
(NIPS 2018)
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Motivation

* The basic principles for designing CNN for region and pixel level tasks are diverging from the
principles for image classification.

* Unify the advantages of networks designed for region and pixel level tasks in obtaining deep

features with high-resolution.

Image classification Region and pixel level tasks

Segmentation, pose estimation, detection ...



FishNet =

Motivation

* Traditional consecutive down-sampling will prevent the very shallow layers to be directly
connected till the end, which may exacerbate the vanishing gradient problem.

* Features from varying depths could be used for refining each other.
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FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction, NIPS 2018.
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FishNet

MS COCO val-2017 detection and instance segmentation results.

Instance Segmentation| Object Detection
Backbone AP*/AP%/AP;,/AP; | APY/APL/APY, /AP
ResNet-50 [ 3] 34.5/15.6/37.1/52.1 | 38.6/22.2/41.5/50.8
ResNet-501 34.77/18.5/37.4/147.77 | 38.7/22.3/42.0/51.2
ResNeXt-50 (32x4d)" | 35.7/19.1/38.5/48.5 | 40.0/23.1/43.0/52.8
FishNet-188 37.0/19.8/40.2/50.3 | 41.5/24.1/44.9/55.0
vs. ResNet-50" +2.3/+1.3/+2.8/+2.6 | +2.8/+1.8/+2.9/+3.8
vs. ResNeXt-507 +1.3/+0.7/+1.7/+1.8 | +1.5/+1.0/+1.9/+2.2



FishNet

* Fish tall, fish body, fish head
* More flexible information flow
* Adaptive feature resolution reservation



Region Proposal by Guided Anchoring
(CVPR 2019)
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Overview

* We introduce a Guided Anchoring Scheme to generate anchors and
build up a Guided Anchoring Region Proposal Network (GA-RPN)

* GA-RPN achieves 9.1% higher average recall (AR) on MS COCO with
90% fewer anchors than the RPN baseline.

* GA-RPN mmproves Fast R-CNN, Faster R-CNN and RetinaNet by over
2.2%, 2.7% and 1.2%.
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Region Proposal Network (RPN)

SI.'dmg —— > anchors ——— prediction
Window
Image feature Base anchors
| 2k scores | | 4k coordinates | <mm k anchor boxes
cls layer reg layer .
RPN adopts a uniform \ f
anchoring scheme which [ 256d |
uniformly generates anchors t intermediate layer
with predefined scales and

aspect ratios over the whole
image.

sliding window:

conv feature map

RPN

Ren S, He K, Girshick R, et al. Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems. 2015: 91-99.
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Baseline

Uniform anchoring scheme has intrinsic drawbacks:

* Most of generated anchors are 1rrelevant to the objects. (less than 0.01%
anchors are positive samples)

* The conventional method are unaware of object shapes.
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Baseline

How to overcome such drawbacks:

* Anchors should be distributed on feature maps considering how likely the
locations contain objects.

* Anchor shapes should be predicted rather than pre-defined.
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Guided Anchoring

Guided Anchoring Component has following steps:

* The first step identifies the locations where objects are likely to exist.
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Guided Anchoring
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Guided Anchoring

Guided Anchoring Component has following steps:
* The first step identifies the locations where objects are likely to exist.

* The second stage predicts shapes of anchors.
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Guided Anchoring

Anchor Shape Prediction
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Guided Anchoring

Feature Adaption

o-ozE Guided anchoring
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Guided Anchoring

Why feature adaptive?

A feature and an anchor on the same location should be consistent.

47.5 54.7 59.4 31.7 55.1 64.6

GA-RPN w/o F.A. 54.0 60.1 63.8 36.7 63.1 71.5
GA-RPN + F.A. 59.2 65.2 68.5 40.9 67.8 79.0
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Guided Anchoring

Experiment Results
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Guided Anchoring

Experiment Results

Fast R-CNN 37.1 59.6 39.7 20.7 39.5 47.1
GA-Fast-RCNN 39.4 59.4 42.8 21.6 41.9 50.4
Faster R-CNN 37.1 59.1 40.1 21.3 39.8 46.5

GA-Faster-RCNN 39.8 59.2 43.5 21.8 42.6 50.7

RetinaNet 35.9 55.4 38.8 19.4 38.9 46.5

GA-RetinaNet 37.1 56.9 40.0 20.1 40.1 48.0

Detection results on MS COCO 2017 test-dev with ResNet-50 backbone
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Guided Anchoring

Examples




Guided Anchoring

* From sliding window to sparse, non-uniform distribution
* From predefined shapes to learnable, arbitrary shapes
* Refine features based on anchor shapes



CARAFE: Content-Aware ReAssembly of Features
(ICCV 2019 Oral)
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Background

* Feature upsampling is a key operation in a number of modern convolutional
network architectures, e.g. Feature Pyramids Networks, U-Net, Stacked
Hourglass Networks.

* [Its design is critical for dense prediction tasks such as object detection and

semantic/instance segmentation.

Object detection Semantic segmentation Instance segmentation
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Background

nearest

Deconvolution
(Transposed Convolution)

Deconvolution is an inverse
operator of a convolution, which
uses a fixed kernel for all samples
within a limited receptive field.
(Pros: learnable kernel / Cons: not
content-aware, limited receptive s

field)

Interpolations leverage
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and hand-crafted upsampling
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(Pros: low cost / Cons: hand-
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Background
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Interpolations leverage

distances to measure the
correlations between pixels,
and hand-crafted upsampling
kernels are used.

(Pros: low cost / Cons: hand-
crafted upsampling kernels)
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00 02 04 06 08 10

Bilinear

Pixel Shuffle reshapes depth
on the channel space into
width and height on the spatia
space. It brings highly
computational overhead when
expanding the channel space.
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Deconvolution
(Transposed Convolution)

Deconvolution is an inverse

operator of a convolution, which T3
uses a fixed kernel for all samples/ | A
within a limited receptive field.
(Pros: learnable kernel / Cons: not
content-aware, limited receptive -

field)
Pixel Shuffle

r2 channels High-resolution image (output)

(Pros: learnable kernel/ Cons: not content-aware,
limited receptive field, high cost)
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Overview

Content-Aware ReAssembly of FEatures (CARAFE) is a universal, lightweight and
highly effective upsampling operator.

* Large field of view. CARAFE can aggregate contextual information within a large receptive field.

* Content-aware handling. CARAFE enables instance-specific content-aware handling, which
generates adaptive kernels on-the-fly.

* Lightweight and fast to compute. CARAFE introduces little computational overhead and can be
readily integrated into modern network architectures
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Overview

Content-Aware ReAssembly of FEatures (CARAFE) is a universal, lightweight and
highly effective upsampling operator.

* Large field of view. CARAFE can aggregate contextual information within a large receptive field.

* Content-aware handling. CARAFE enables instance-specific content-aware handling, which
generates adaptive kernels on-the-fly.

* Lightweight and fast to compute. CARAFE introduces little computational overhead and can be
readily integrated into modern network architectures

CARAFE shows consistent and substantial gains across object detection, instance/semantic
segmentation and inpainting (1.2%, 1.3%, 1.8%, 1.1db respectively) with negligible computational
overhead.
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CARAFE

On each location, CARAFE can leverage the content information of such
location to predict assembly kernels and assemble the features inside a
predefined nearby region.

1) The first step is to predict a reassembly kernel for each destination location
according to its content. ( N (X}, k) 1s the k x k sub-region of y centered
at the location [, i.e., the neighbor of X;.)

Wl’ = w(N(le kencoder))°

2) The second step 1s to reassemble the features with predicted kernels.

X} = (N (X, kup), Wir).
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CARAFE

Content-aware Reassembly Module

. Example Location
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« Each source location on ¥ corresponds to o destination locations on X "
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CARAFE

Kernel Predication Module

_________________________________

Kernel
Prediction Module

Channel Content

—_— Kernel
Compressor Encoder

Normalizer
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_________________________________________________________________________________________________________________________

1) Channel Compressor. (1 x 1 convolution layer which compresses the input feature channel from C to
Cm. The goal of this step is for speed-up without harming the performance.)
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CARAFE

Kernel Predication Module

___________________________________________________________________________________________________________________________________________________________________________________________________________

Kernel - M
Prediction Module </< Q\E;¢
Channel Content H oH 5
—H Kernel
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____________________________________________________________________________________________________________________________________________________________________________________________________________

1) Channel Compressor. (1 x 1 convolution layer which compresses the input feature channel from C to
Cm. The goal of this step is for speed-up without harming the performance.)

2) Content Encoder. (Convolution layer of kernel size k040 t0 generate reassembly kernels based on
the content of input features. An empirical formula Kepcoger = Kyp — 2 18 @ good trade-off between

performance and efficiency through our study)
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CARAFE

Kernel Predication Module

___________________________________________________________________________________________________________________________________________________________________________________________________________

Kernel
Prediction Module

Channel Content
Compressor H Encoder
¢ i

w Cw

Kernel
Normalizer

____________________________________________________________________________________________________________________________________________________________________________________________________________

1) Channel Compressor. (1 x 1 convolution layer which compresses the input feature channel from C to
Cm. The goal of this step is for speed-up without harming the performance.)

2) Content Encoder. (Convolution layer of kernel size k040 t0 generate reassembly kernels based on
the content of input features. An empirical formula Kepcoger = Kyp — 2 18 @ good trade-off between

performance and effificiency through our study)
3) Kernel Normalizer. (Each k,;, x ky;,, reassembly kernel is normalized with a softmax function.)
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Applications

CARAFE introduces little computational overhead and can be readily integrated into modern
network architectures.

* Object Detection (Faster R-CNN w/ FPN)
* Instance Segmentation (Mask R-CNN w/ FPN)
* Semantic Segmentation (UperNet)

* Image Inpainting (Global&Local, Partial Conv)
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Applications

Object Detection & Instance Segmentation

1) Feature Pyramid Network (Faster R-CNN, Mask R-CNN)

2) Mask Head (Mask R-CNN)

Faster R-CNN
w/ FPN [27]

—>» class
> T 71024 ]—’l 1024 Ij'
Rol || x256 <

> 14><14___) 28%28
Rol || X256 |x4 X256

Feature Pyramid Network (FPN) Mask Head
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Experiments

Object Detection & Instance Segmentation:

Table 1: Detection and Instance Segmentation results on MS COCO 2018 rest-dev.

Method Backbone Task AP AP59 AP7s APs APy APL

Faster R-CNN ResNet-50 BBox 36.9 59.1 39.7 21.5 40.0 45.6
Faster R-CNN w/ CARAFE ResNet-50 BBox 38.1 60.7 41.0 228 41.2 469
ResNet-50 BBox 37.8 59.7 40.8 222 40.7 46.8
Mask R-CNN ResNet-50 Segm 34.6 565 36.8 187 373 45.1
ResNet-50 BBox 38.8 61.2 42.1 23.2 41.7 479
ResNet-50 Segm 359 581 38.2 198 38.6 46.5

Mask R-CNN w/ CARAFE




Experiments

Semantic Segmentation:

Table 5: Semantic Segmentation results on ADE20k val. Single

scale testing 1s used in our experiments.

Method Backbone mloU P.A.

PSPNet ResNet-50 41.68 80.04
PSANet ResNet-50 41.92 80.17
UperNet’ ResNet-50 40.44 79.80
UperNet w/ CARAFE ResNet-50 42.23 80.34

3

T X R F
hinese University of Hong Kong



Experiments

Image Inpainting:

Table 7: Image inpainting results on Places val.

Method L1(%) PSNR(dB)
Global&Local 6.78 19.58
Partial Conv 5.96 20.78
Global&lLocal w/ CARAFE 6.00 20.71
Partial Conv w/ CARAFE 5.72 20.98

HFRETXLXF
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Experiments

Compare with previous upsamplers:

Table 2: Detection results with Faster RCNN. Various upsam-
pling methods are used in FPN.

Method AP APso AP75 APs APy APr FLOPs
Nearest 36.5 584 393 21.3 403 472 0
Bilinear 36.7 58.7 397 21.0 40.5 475 8k
Nearest + Conv  36.6 58.6 395 214 403 464 4.7M
Bilinear + Conv  36.6 58.7 394 21.6 40.6 468 4.7M
Deconv [21] 364 582 392 21.3 399 465 1.2M
Pixel Shuffle[25] 36.5 58.8 39.1 209 404 46.7 4.M
GUM[ 1 ¢] 369 589 39.7 215 40.6 48.1 1.1M
S.A.[!] 36.9 58.8 39.8 21.7 40.8 470 28k
CARAFE 37.8 60.1 40.8 23.1 41.7 48.5 19%

3
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Experiments

How CARAFE works:

(a) (b)

. Example Locations . Reassembly Center . Reassembled Units



CARAFE

* Universal operator
* Content-aware upsampling
* Fast to compute



Hybrid Task Cascade for Instance Segmentation
(CVPR 2019)



Pipeline ;

A hybrid architecture with interleaved task branching and cascade.

Mask feature

Proposals Regressed box )
> RPN l \
Backbone R Stage 1 R Stage 1 Stage 2 R Stage 2
cls. + reg. mask cls. + reg. cls. + reg.
Semantic I I

\ 4

head Semantic feature




Pipeline

Baseline; Cascade R-CNN

Proposals

\ 4

RPN

Stage 1 R Stage 2
cls. + reg. Regressed box cls. + reg. see

A 4

Backbone




Pipeline

Baseline; Cascade R-CNN

Proposals

\ 4

RPN

Stage 1 R Stage 2
cls. + reg. Regressed box cls. + reg.

A 4

Backbone

Problem: designed for detection, not segmentation



Pipeline

Baseline; Cascade R-CNN + Mask R-CNN

Backbone

\ 4

RPN

Proposals

\ 4

A 4

Stage 1 R Stage 2
mask mask
Stage 1 Stage 2
cls. + reg. Regressed box cls. + reg.




Pipeline

Baseline; Cascade R-CNN + Mask R-CNN

\ 4

RPN

Proposals

\ 4

Backbone

A 4

Stage 1 R Stage 2
mask mask
Stage 1 R Stage 2
cls. + reg. Regressed box cls. + reg.

Problem: mismatch of training and testing pipeline




Pipeline

Problem: mismatch of training and testing pipeline

‘ 2PN Proposals Stage 1 . Stage 2
mask mask
training
. Stage 1 . Stage 2
Backbone 1 cls. + reg. Regressed box | cls. + reg.
‘ 2PN Proposals Stage 1 Stage 2
. mask mask
testing | [
. Stage 1 R Stage 2
Backbone 1 cls. + reg. Regressed box | cls. + reg.




Pipeline

Task cascade:

Backbone

Proposals

RPN

\ 4

A 4

Regressed box

ordinal bbox prediction and mask prediction

\ 4

Stage 1
cls. + reg.

\ 4

Stage 1
mask

|

Stage 2
cls. + reg.

Stage 2
cls. + reg.




Pipeline ;

Task cascade: ordinal bbox prediction and mask prediction

Proposals Regressed box
> RPN l
Backbone R Stage 1 R Stage 1 Stage 2 R Stage 2
cls. + reg. mask cls. + reg. cls. + reg.

Problem: no connection between mask branches of different stages



Pipeline

Interleaved execution: box cascade & mask cascade

Mask feature

Backbone

Proposals Regressed box J
> RPN l \
Stage 1 . Stage 1 Stage 2 Stage 2
cls. + reg. mask cls. + reg. mask coe




Pipeline ;

Interleaved execution: box cascade & mask cascade

Mask feature

Proposals Regressed box )
> RPN l \
Backbone R Stage 1 R Stage 1 Stage 2 R Stage 2
cls. + reg. mask cls. + reg. mask

Problem: contextual information is not much explored



Pipeline

Hybrid branching: additional semantic segmentation branch

Mask feature

Proposals Regressed box J
> RPN l \
Backbone . Stagel .  Stagel Stage2 | |  Stage2
cls. + reg. mask cls. + reg. mask coe
| Semantic I I

head Semantic feature




Hybrid Task Cascade

 (Cascade between different tasks
* |nterleaved execution
 Contextual iInformation fusion
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Experiments
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semantic
37 interleaved branch
baseline cascade
35 R-50 Cascade

with mask
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mask AP on test-dev

45.3
44.3

42.5
(+1.8)

GARPN

finetune
better

40.7 backbone
(+1.2)
39.5 multi-scale
381 (+1.4) training
37.3 (+0.8) synchronize BN

(+0.6)

deformable
conv

36.7

semantic

interleaved branch

baseline cascade
R-50 Cascade
with mask

49.0
(+1.6)
47.4
(+2.1) model

ensemble

multi-scale &
flip testing
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mmdetection
(Open-MMLAB)



Codebase =2

IJ open-mmlab / mmdetection ©Watch 244  &Star 580  YFork 1705

MMDetection maskrcnn-benchmark  Detectron ~ SimpleDet

Fast R-CNN v v v
Faster R-CNN v v v 541
Mask R-CNN v v v
RetinaNet v v v . <
DCN v v v e
DCNv2 v

Mixed Precision Training v v
Cascade R-CNN * Ve 1
Weight Standardization . .

* 017+ ) | el r 1) | j N

Mask Scoring R-CNN

AN N N R N N N N N N N N N N N N N N N N NN

FCOS
SSD « PyTorch @PyTorch - 12 Oct 2018
R-FCN ‘ ' {mmdetection, mmcv} by Multimedia Lab @ CUHK
M2Det - a modular, object detection and segmentaticn framework
GHM - fast state-of-the-art models like Mask RCNN, RetinaNet, etc.
ScratchDet - powered the winning entry of COCO Detection 2018 challenge.
Double-Head R-CNN github.com/open-mmlab/mmd.
Gr1d R-CNN mr re: en/latest,
FSAF @) 1 95 O 2322 &
Hybrid Task Cascade
Guided Anchoring
Libra R-CNN * 10+ research institutes
Generalized Attention
GCNet e 20+ supported methods
HRNet

TridentNet [17] v * 200+ pre-trained models GitHub: mmdet
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[Update] 1st place solution with code
o e - ® o5
yosted in iMaterialist (Fashion) 2019 at FGVC6 24 days aac
o—o—C—=C u
Hi Kagglers, E n E

Miras Amir

My solution is based on the COCO challenge 2018 winners arti : m=" 01.07518.

Wlace

[=]

GitHub: mmdet

Code:

https://github.com/amirassov/kaggle-imaterialist

el.

Hybrid Task Cascade with ResNeXt-101-64x4d-FPN backbone. This model has a metric Mask mAP =
43.9 on COCO dataset. This is SOTA for instance segmentation.

The entries ranking 1, 2, and 3 of iMaterialist (Fashion) 2019 at FGVC6 (CVPR 2019
Workshop) are based on HTC. Here is the post of the winner.
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Thank you!

Dynamic forwarding and routing as a computational strategy for detection and beyond



