Deep Learning Face Attributes in the Wild
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1. Overview

Performance
Problem

Face Attributes Prediction in the Wild

FaceTracer [Eccvog] 81% 4%
PANDA-W [cvPR14] 719% 1%
PANDA-I [cvpPr14] 85% 81%

SC+ANet 83% 76%

L Nets+ANet(w/0) 83% 719%
LNets+ANet 87% 84%
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(a) HOG(landmarks)+SVM
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(b) Our Method
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Running Time
LNets: 3bms, ANet: 14ms

Arched Eyebrows? Receding Hairline?
Big Eyes? Mustache?

e Project Page: http://personal.ie.cuhk.edu.hk/~1z013/projects/FaceAttributes.html

3. Large-scale CelebFaces Attributes Dataset
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o 202,599 face images
e 10,177 human identities

e 5 landmarks per image

e 40 attributes per image

e Avalilable at: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

5.1. Experlmental Results (Face Locallzatlon)
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20x larger than previous
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2. Motivation

e EXisting methods: global and local methods

e Global methods: not robust to deformations of objects

e |_ocal methods: rely on face localization and alignment, which would fail under

unconstrained face images with complex variations

e Our idea: joint face localization and attribute prediction using only image-level attribute tags
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(a) single detector (b) multi-view detector (c) face localization by attributes

4. Overall Pipeline

o _Nets:

e ANet:

Gender

Test Image Activations
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(d) Extracting features to predict attributes

5.2. Experimental Results (Attribute Prediction)
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(@) M ANet(FC) ™ ANet (C4) ® ANet (C3) . — ANet (After fine-tuning) —— HOG (After PCA)
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— RESPONSe ON Face Images
- Response on Bg. Images

threshold

Percentage of Images

Maximum Score

(1) pre-trained with massive general objects
(11) face localization with weak supervision

(1) pre-trained with massive face identities
(11) attribute prediction by leveraging local

o |_Nets and ANet are jointly learned

o With carefully designed pre-
training strategies, our approach
IS robust to background clutters
and face variations.

e \\e devise a new fast feed-
forward algorithm for locally
shared filters to save redundant
computation.

e \\e have also revealed multiple
Important facts about learning
face representation, which shed
a light on new directions of face
localization and representation
learning.




