

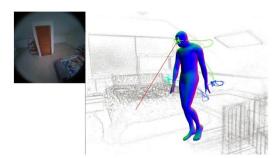
From Egocentric Perception to Embodied Intelligence:
Building the World in First Person

Ziwei Liu 刘子纬 Nanyang Technological University

Why Egocentric Perception?

Egocentric Perspective Provides:

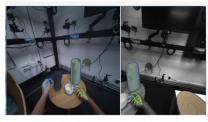
1. Natural Human Experience and Cognition



Gaze, Attention

Navigation, Spatial Awareness

2. Better Context for Interaction



Object Manipulation Hand-Eye Coordination

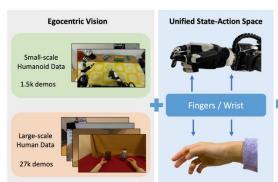
Social Interaction

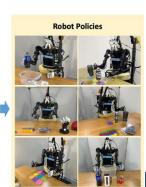
Egocentric Perception Enables:

1. Personal AI Assistant

EgoLife, CVPR2025

2. Embodied AI Learning





Perception & Understanding

Learn to see and reason from the first person

cognitive foundation of egocentric understanding

Egocentric Life Assistant Al

Perception & Understanding Life Assistant Al

EgoLife: Towards Egocentric Life Assistant

Jingkang Yang, Shuai Liu, Hongming Guo, Yuhao Dong, Xiamengwei Zhang, Sicheng Zhang, Pengyun Wang, Zitang Zhou, Binzhu Xie, Ziyue Wang, Bei Ouyang, Zhengyu Lin, Marco Cominelli, Zhongang Cai, Yuanhan Zhang, Peiyuan Zhang, Fangzhou Hong, Joerg Widmer, Francesco Gringoli, Lei Yang, Bo Li, Ziwei Liu

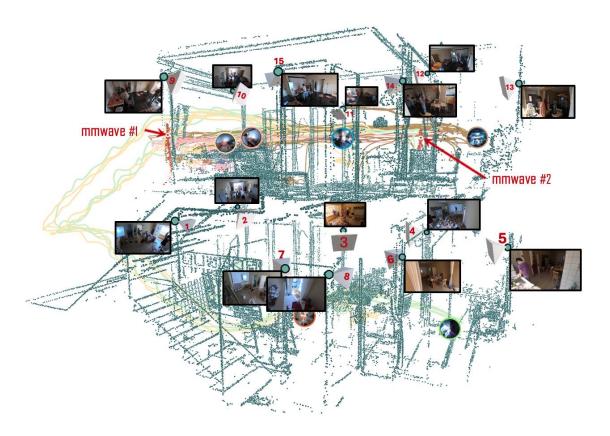
Towards Egocentric Life Assistant

(Inspired by some reality show)

We invited 6 people living together

Each one wears Meta Aria glasses (almost) all day long.

The EgoLife Collected Data



Ego video, audio, mmwave, wifi, Ego/Exo signals synchronization.

The EgoLife Timeline

The Earth Day Party

	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7			
	11 12 13 14 17 18 19 20 21 22 14 14 17 18 19 20 21 22 14 14 17 18 19 20 21 22 14 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	2 10 11 12 13 15 16 17 18 20 21 22	10 11 14 15 16 17 18 19 20 21 22	10 11 12 13 15 16 17 18 19 20 21 22	11 12 14 15 16 17 18 19 20 21 22	10 11 12 13 14 15 16 17 19 20 21 22 1	10 11 12 13 14 15 17 18 19 20			
				10 010 015 10 010 015 10 010 015						
	####									
S	ocial×183 🔏 H	lousekeeping×145	⊕ Cooking×86	⋈ Shopping×74	🗷 Dining×67 🎉 I	Party×64 🏿 Arts &	& Craftwork×57			
À	Social ×183 Housekeeping ×145 Cooking ×86 Shopping ×74 Dining ×67 Party ×64 Arts & Craftwork ×57 Leisure ×49 Games ×46 Music & Dance ×45 Outing ×40 Setup ×35 Meeting ×31 Commuting ×15									

The EgoLifeQA Benchmark

Day 1: 21:48:21.200

What was the first song mentioned after planning to dance?

A. Why Not Dance B. Mushroom

- C. I Wanna Dance with Somebody
- D. Never Gonna Give You Up

Answer: A. Evidence: @ Day 1
Shure sang after Jake asked us to dance.

11:46:59.050

@ Day 1

Day 4: 11:34:05.400

Which price is closest to what we paid for one yogurt?

B. RMB 3 A. RMB 2 C. RMB 4 D. RMB 5

Answer: B. Evidence: The yogurt is on sale, RMB19.9 for 6 cups

@ Day 3: 17:00:04.450

TaskMaster Tasks Assignment and Review

Many things are in my cart already. What items that we previously discussed have I not bought yet?

- A. Milk
- B. Chicken wings
- C. Strawberries
- D. Bananas Day 5: 16:20:46.350

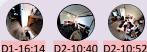
Answer: A. Evidence: I made a shopping list, and already got fruit, etc., but ...

Day 4

What activity do I usually do while drinking coffee?

- A. Scrolling through TikTok
- B. Texting on the phone
- C. Tidying up the room
- D. Doing Craftwork

Answer: D. Evidence: Day 4: 12:08:50.600



I had coffee a total of five times, three of which were while doing crafts...

Jake

Nicous

D. Lucia



D4-17:19 D4-17:22 D4-22:00 D5-22:52

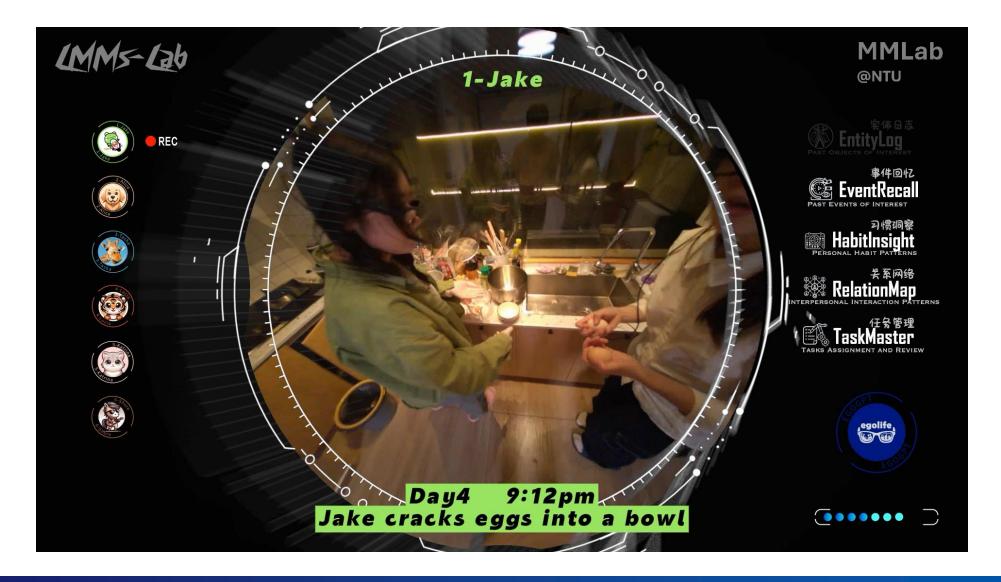
guitar with Shure me twice, more frequently than anyone else.

HabitInsight

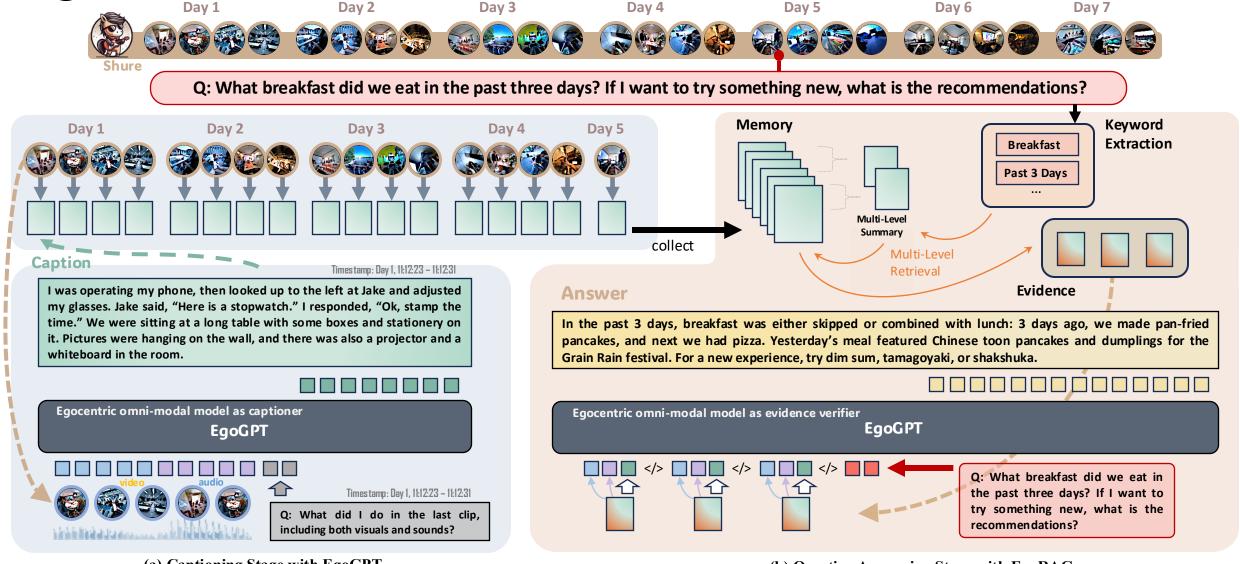
Personal Habit Patterns

RelationMap Interpersonal Interaction Patterns

The EgoLifeQA Benchmark



EgoButler



(a) Captioning Stage with EgoGPT

(b) Question Answering Stage with EgoRAG

EgoButler – The EgoGPT Component

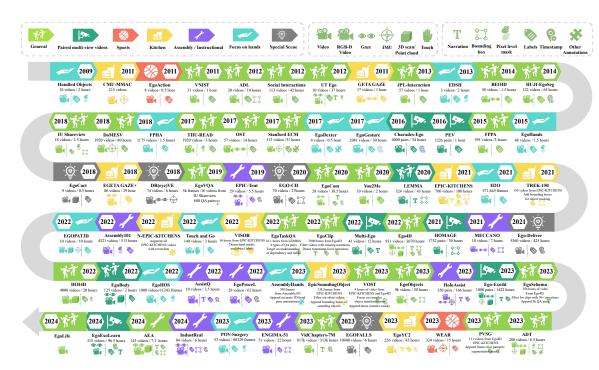
LLaVA-OneVision (Qwen2 as LLM)

Whisper as audio encoder, SFT an **audio projector** on Qwen2 with ASR datasets

LLaVA-OneVision that supports audio

SFT on EgoIT and EgoLife

EgoGPT



Overview of Classic Egocentric Dataset

Performance of EgoGPT-7B. The table presents a comprehensive comparison of **EgoGPT** against state-of-the-art commercial and open-source models on existing egocentric benchmarks. With EgoIT and EgoLife Day 1 data, EgoGPT achieve impressive performance on ego setting.

Model	#Param	#Frames	EgoSchema	EgoPlan	EgoThink
GPT-4v [95]	-	32	56.6	38.0	65.5
Gemini-1.5-Pro [96]	-	32	72.2	31.3	62.4
GPT-4o [97]	-	32	72.2	32.8	65.5
LLaVA-Next-Video [98]	7B	32	49.7	29.0	40.6
LongVA [99]	7B	32	44.1	29.9	48.3
IXC-2.5 [100]	7B	32	54.6	29.4	56.0
InternVideo2 [101]	8B	32	55.2	27.5	43.9
Qwen2-VL [94]	7B	32	66.7	34.3	59.3
Oryx [57]	7B	32	56.0	33.2	53.1
LLaVA-OV [55]	7B	32	60.1	30.7	54.2
LLaVA-Videos [102]	7B	32	57.3	33.6	56.4
EgoGPT (EgoIT)	7B	32	73.2	32.4	61.7
EgoGPT (EgoIT+EgoLifeD1)	7B	32	75.4	33.4	61.4

EgoButler – The EgoGPT Component

LLaVA-OneVision (Qwen2 as LLM)

Whisper as audio encoder, SFT an **audio projector** on Qwen2 with ASR datasets

LLaVA-OneVision that supports audio

SFT on EgoIT and EgoLife

EgoGPT

Dataset Composition of EgoIT-99K. We curated 9 classic egocentric video datasets and utilized their annotations to generate captioning and QA instruction-tuning data for finetuning **EgoGPT**, **#AV** indicates the number of videos with audio used for training.

Dataset	Duration	#Videos (#AV)	#QA
Ego4D [5]	3.34h	523 (458)	1.41K
Charades-Ego [25]	5.04h	591 (228)	18.46K
HoloAssist [29]	9.17h	121	33.96K
EGTEA Gaze+ [26]	3.01h	16	11.20K
IndustReal [28]	2.96h	44	11.58K
EgoTaskQA [93]	8.72h	172	3.59K
EgoProceL [27]	3.11h	18	5.90K
Epic-Kitchens [4]	4.15h	36	10.15K
ADL [24]	3.66h	8	3.23K
Total	43.16h	1529 (686)	99.48K

Performance of EgoGPT-7B. The table presents a comprehensive comparison of **EgoGPT** against state-of-the-art commercial and open-source models on existing egocentric benchmarks. With EgoIT and EgoLife Day 1 data, EgoGPT achieve impressive performance on ego setting.

Model	#Param	#Frames	EgoSchema	EgoPlan	EgoThink
GPT-4v [95]	-	32	56.6	38.0	65.5
Gemini-1.5-Pro [96]	-	32	72.2	31.3	62.4
GPT-4o [97]	-	32	72.2	32.8	65.5
LLaVA-Next-Video [98]	7B	32	49.7	29.0	40.6
LongVA [99]	7B	32	44.1	29.9	48.3
IXC-2.5 [100]	7B	32	54.6	29.4	56.0
InternVideo2 [101]	8B	32	55.2	27.5	43.9
Qwen2-VL [94]	7B	32	66.7	34.3	59.3
Oryx [57]	7B	32	56.0	33.2	53.1
LLaVA-OV [55]	7B	32	60.1	30.7	54.2
LLaVA-Videos [102]	7B	32	57.3	33.6	56.4
EgoGPT (EgoIT)	7B	32	73.2	32.4	61.7
EgoGPT (EgoIT+EgoLifeD1)	7B	32	75.4	33.4	61.4

EgoButler – The EgoRAG Component

Boosted by EgoGPT, EgoButler achieves SOTA through:

- In-depth egocentric video familiarity
- Omni-modal comprehension effectively integrating both visual and audio signals

Powered by EgoRAG, EgoGPT enables:

- Week-long memory retrieval, answering complex, longhorizon questions
- Robust grounding and context-aware reasoning, where others often fail

Table 5. **Performance comparison of EgoGPT with state-of-the-art models on EgoLifeQA benchmarks.** For a fair comparison on EgoLifeQA, EgoGPT was replaced with the corresponding models in the EgoButler pipeline to evaluate their performance under the same conditions. Models that provide captions for EgoLifeQA use 1 FPS for video sampling.

Model	#Frames	Audio	Identity			EgoLi	feQA		
Model	#FTallies	Audio	identity	EntityLog	EventRecall	HabitInsight	RelationMap	TaskMaster	Average
Gemini-1.5-Pro [95]	-	√	X	36.0	37.3	45.9	30.4	34.9	36.9
GPT-4o [96]	1 FPS	X	X	34.4	42.1	29.5	30.4	44.4	36.2
LLaVA-OV [55]	1 FPS	×	X	36.8	34.9	31.1	22.4	28.6	30.8
EgoGPT (EgoIT-99K)	1 FPS	√	Х	35.2	36.5	27.9	29.6	36.5	33.1
EgoGPT (EgoIT-99K+D1)	1 FPS	\checkmark	\checkmark	39.2	36.5	31.1	33.6	39.7	36.0

Limitation

I One-Time Retrieval → Agentic Search

Better Person Identification Modeling

Pattern Tracker: Building a habit and behavior pattern engine for continuous insight generation

Extremely Long, Egocentric,

Interpersonal, Multi-view, Multi-modal, Daily Life Video Understanding

More to explore:

Dense Caption, Transcript, Gaze, Multiple Third-Person View, SLAM

egolife-ai.github.io

Perception & Understanding

Learn to see and reason from the first person

cognitive foundation of egocentric understanding

Egocentric Life Assistant Al

Perception & Understanding

Learn to see and reason from the first person

cognitive foundation of egocentric understanding

egolife

ego-r1

Ego-R1

better long-term reasoning!

Egocentric Life Assistant Al

Perception & Understanding Life Assistant AI - long-term reasoning

Ego-R1: Chain-of-Tool-Thought for Ultra-Long Egocentric Video Reasoning

Shulin Tian, Ruiqi Wang, Hongming Guo, Penghao Wu, Yuhao Dong, Xiuying Wang, Jingkang Yang, Hao Zhang, Hongyuan Zhu, Ziwei Liu

Challenges

- Ultra-Long Event-Based Egocentric Videos
 - Long-horizon
 - Spanning from days to weeks
 - Multimodal Complexity
 - Cross-modality linkage
 - Sparse event cues
 - Randomly distributed evidence
- Modelling of Long Video
 - Rigid Pipeline
 - End-to-end
 - Sampling

Why it's hard

Long horizon

Events span multiple days

Multi-modal

Vision, audio & text

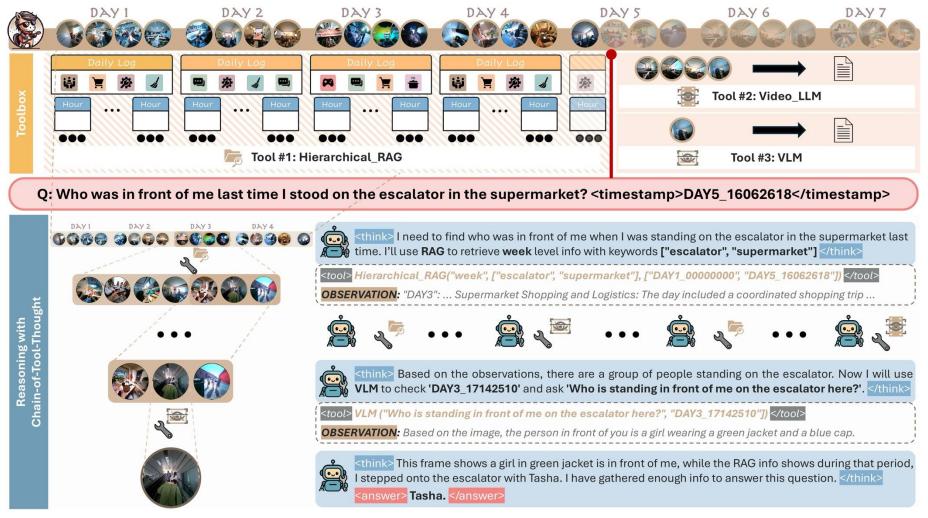
Sparse cues

Key events are rare

Rigid pipelines

Lack adaptability

Ego-R1: Tool-Use Agent for Ultra-Long Egocentric Videos VINGAPORE



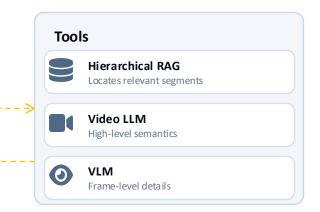
A sample workflow of Ego-R1.

Key Idea: Chain-of-Tool-Thought (CoTT)

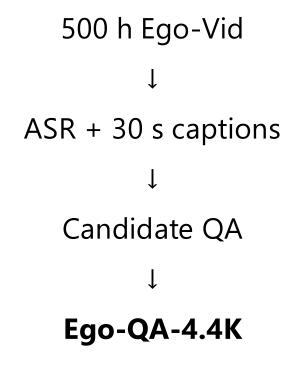
$$C = (S^0, S^1, \dots, S^n), \quad S^i = (T_i^{\text{th}}, T_i^{\text{to}}, o_i)$$

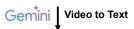
- C is a sequence of n reasoning steps.
- T_i^{th} : thought
- T_i^{to} : tool call

- Action space: $\mathcal{A} = F_j$
- Observation space: $(o_i^{\text{rag}}, o_i^{\text{vid}}, o_i^{\text{vlm}})^{\bar{}} \in \mathcal{O}$



Stage I: Data Generation – Raw QA

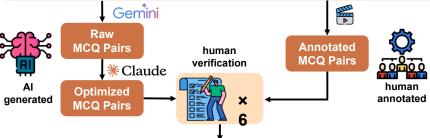




30s segments of A1 - A6's log

"view": "A1","date": "DAY4","time": "17240000-17243000",

"text": "I saw Shure standing nearby, dressed in a blue hoodie, while Nicous was sitting on a chair playing the guitar, ... Her expression was serious, as if she was facing a tricky problem."



"Query Time": ["DAY3", "11175412"]

final MCQ pairs

"Question": "Why is it so important to monitor the power banks and keep their lights on?"

A) Avoid losing work time waiting recordina

B) Prevent data loss and re-

C) Maintain light proper functioning D) Save battery life for later use "Target Time": ["DAY1", "12193000 - 12200000"]

"Reason": "...Shure said, 'That one isn't plugged in... 'Oh no, it's out of battery. ' He replied, 'It's dead already. ... ' You need to record it again."

Stage I: Data Generation – CoTT

2 CoTT Data (for SFT)

2.9 K high-quality raw QA

 \downarrow

LLM-driven CoTT engine

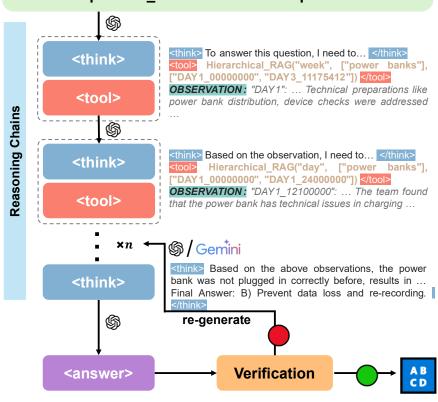
 \downarrow

Ego-CoTT-25K

- avg 7.42 tool calls / task
- observation loop *

CoTT Generation

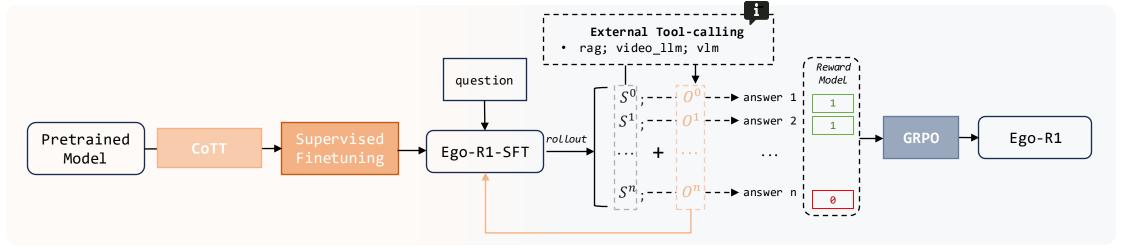
Question: Why is it so important to monitor the power banks and keep their lights on? <timestamp>DAY3_11175412



Stage II: Training (SFT+RL)

Ego-CoTT-25K

Ego-QA-4.4K



(1) Stage 1: SFT with CoTT

(2) Stage 2: GRPO for Ego-R1

$$\begin{split} \mathcal{J}_{\text{GRPO}}(\theta) &= \mathbb{E}_{[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(O|q)]} \bigg[\frac{1}{G} \sum_{i=1}^G \sum_{y=1}^T \frac{1}{|S_i^y|} \sum_{t=1}^{|S_i^y|} \bigg\{ \min \bigg[\frac{\pi_{\theta}(S_{i,t}|q, I_y, S_{i, < t})}{\pi_{\theta_{\text{old}}}(S_{i,t}|q, I_y, S_{i, < t})} \hat{A}_{i,t}^y, \\ & \text{clip} \Big(\frac{\pi_{\theta}(S_{i,t}|q, I_y, S_{i, < t})}{\pi_{\theta_{\text{old}}}(S_{i,t}|q, I_y, S_{i, < t})}, 1 - \varepsilon, 1 + \varepsilon \Big) \hat{A}_{i,t}^y - \beta \mathbb{D}_{\text{KL}}[\pi_{\theta} \| \pi_0] \bigg] \bigg\} \bigg] \end{split}$$

Results: Compact Model, Competitive Results

Table 2: Quantitative results on video question-answering benchmarks. The proposed Ego-R1 model demonstrates superior performance across multiple metrics. Bold indicates best performance, underscored values show second best. The results from the 72B version of the model or using less frames are marked in gray. As some of the QA pairs in EgoLifeQA were used for CoTT generation and training, we excluded these from evaluation and retained only a clean subset for fair testing.

Method			Exocentric		Egocentri	ic
Average durations	Size Frames		VideoMME (long) 41 min	EgoSchema 3 min	EgoLifeQA 44.3 h	Ego-R1 Bench 44.3 h
MLLMs						
LongVA [81]	7B	64	45.0	44.1	33.0	23.0
LLaVA-Video [82]	7B	64	61.5	57.3	36.4	29.0
LLaVA-OneVision [28]	7B	1 FPS	60.0	60.1	$\overline{30.8}$	31.6
InternVideo2.5 [64]	8B	512	53.4	63.9	33.0	34.0
Gemini-1.5-Pro [58]	-	-	67.4	72.2	36.9	38.3
RAG Methods						
LLaVA-Video + Video-RAG [37]	7B	64	46.0	66.7	30.0	29.3
LongVA + Video-RAG [37]	7B	64	55.7	41.0	26.0	31.0
Reasoning Models						
Video-R1 [16]	7B	64	50.8	-	34.0	20.0
Video Agents						
VideoAgent [63]	-	8	50.8	54.1	29.2	32.6
LLaVA-OneVision + T^* [79]	7B	8	46.3	66.6	35.4	35.6
Ours						
Ego-R1	3B	-	64.9	68.2	36.0*	46.0

Perception & Understanding

Learn to see and reason from the first person

cognitive foundation of egocentric understanding

From Seeing to Acting

Perception & Understanding

Learn to see and reason from the first person

Learn to move and act as you see

cognitive foundation of egocentric understanding

embodied simulation

Action & Embodiment Learn to move and act as you see

EgoTwin: Dreaming Body and View in First Person

Jingqiao Xiu, Fangzhou Hong, Yicong Li, Mengze Li, Wentao Wang, Sirui Han, Liang Pan, Ziwei Liu

EgoTwin: Dreaming Body and View in First Person

Jingqiao Xiu, Fangzhou Hong, Yicong Li, Mengze Li, Wentao Wang, Sirui Han, Liang Pan, Ziwei Liu

Challenges

Viewpoint Alignment

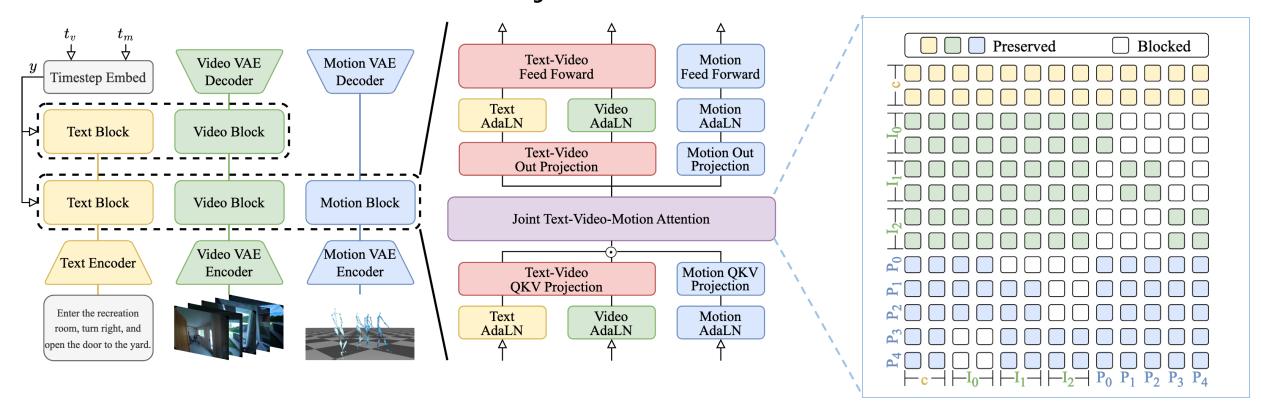
- Existing video generators rely on preset camera parameters, unsuitable for egocentric views.
- Traditional Motion representations centered on the pelvis cannot accurately align with egocentric viewpoints.

Causal Interaction

- Each visual frame provides spatial context guiding human actions (e.g., seeing a door handle → reaching out).
- Newly generated actions, in turn, **alter subsequent visual observations** (e.g., opening the door changes scene layout and camera view).
- Modeling this observation—action causal loop is essential for temporal coherence and realism.

EgoTwin Framework

Text-Video-Motion Joint Training



$$\mathcal{L}_{ ext{DiT}} = \mathbb{E}_{\epsilon_v,\epsilon_m,c,t_v,t_m} \left[\left\| \epsilon_v - \epsilon^v_{ heta}(z^{t_v}_v,z^{t_m}_m,c,t_v,t_m)
ight\|_2^2 + \left\| \epsilon_m - \epsilon^m_{ heta}(z^{t_m}_m,z^{t_v}_v,c,t_m,t_v)
ight\|_2^2
ight]$$

Bidirectional Causal Attention Mechanism

Mathad	,	Video Qı	ıality	Motion Quality			Video-Motion Consistency		
Method	I-FID↓	FVD↓	CLIP-SIM ↑	M-FID↓	R-Prec ↑	MM-Dist ↓	TransErr ↓	RotErr↓	HandScore ↑
VidMLD	157.86	1547.28	25.58	45.09	0.47	19.12	1.28	1.53	0.36
EgoTwin	98.17	1033.52	27.34	41.80	0.62	15.05	0.67	0.46	0.81

Main Results

Variant	,	Video Qı	ıality	M	lotion Qu	ality	Video-Motion Consistency			
variant	I-FID↓	FVD↓	CLIP-SIM↑	M-FID↓	R-Prec ↑	MM-Dist ↓	TransErr ↓	RotErr↓	HandScore ↑	
w/o MR	134.27	1356.81	26.36	43.65	0.56	17.31	0.96	1.22	0.44	
w/o IM	117.54	1237.58	27.10	44.01	0.59	15.87	0.85	0.89	0.57	
w/o AD	109.73	1124.19	26.91	42.58	0.53	16.48	0.74	0.62	0.73	
EgoTwin	98.17	1033.52	27.34	41.80	0.62	15.05	0.67	0.46	0.81	

Ablation Study

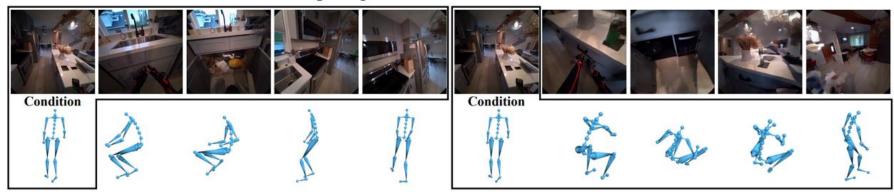
Qualitative Results

Prompt: Enter the recreation room, turn right, and open the door to the yard.

Prompt: Turn left to walk into the kitchen, then turn towards the living area.

Text-to-Motion & Video

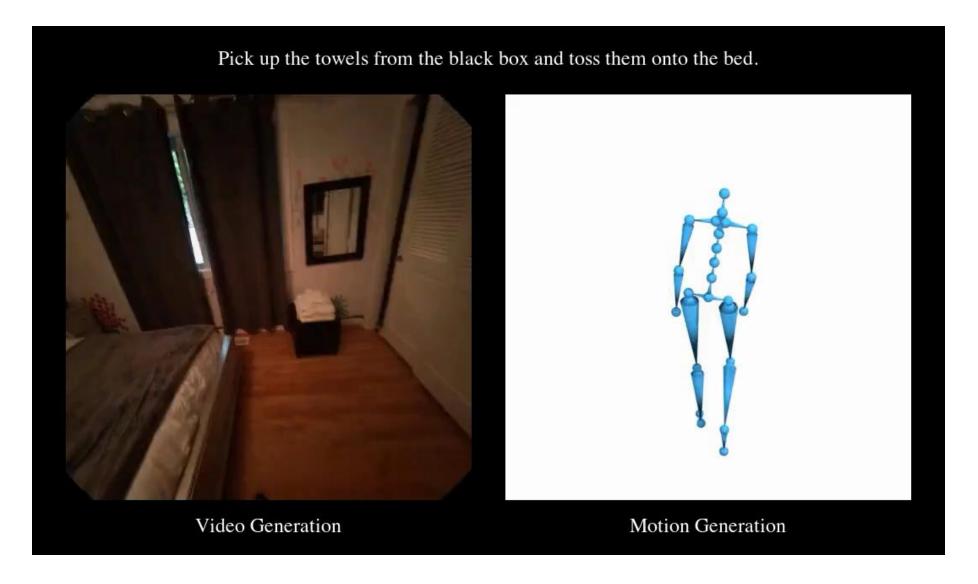
Prompt: Open and close the kitchen cabinet.



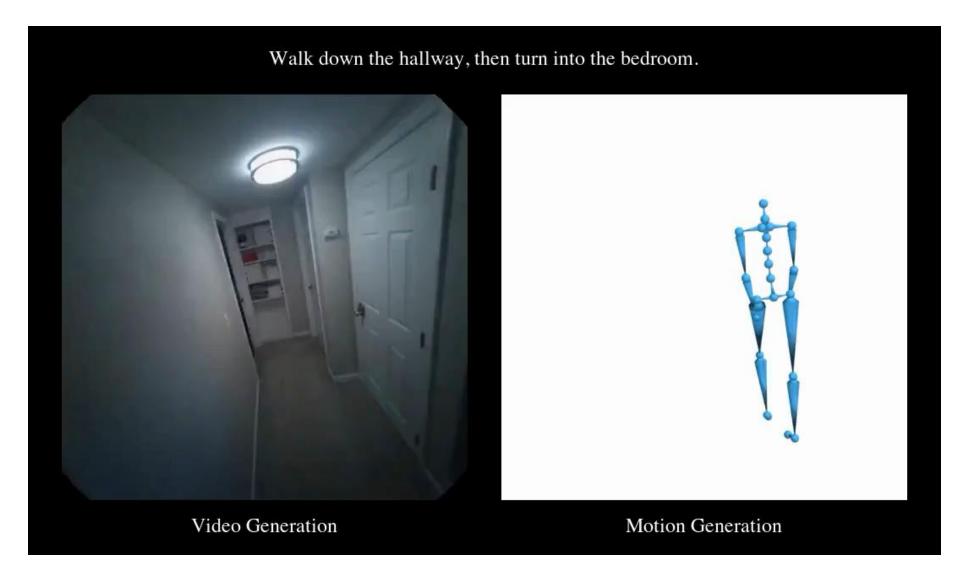
Text & Motion-to-Video

Text & Video-to-Motion

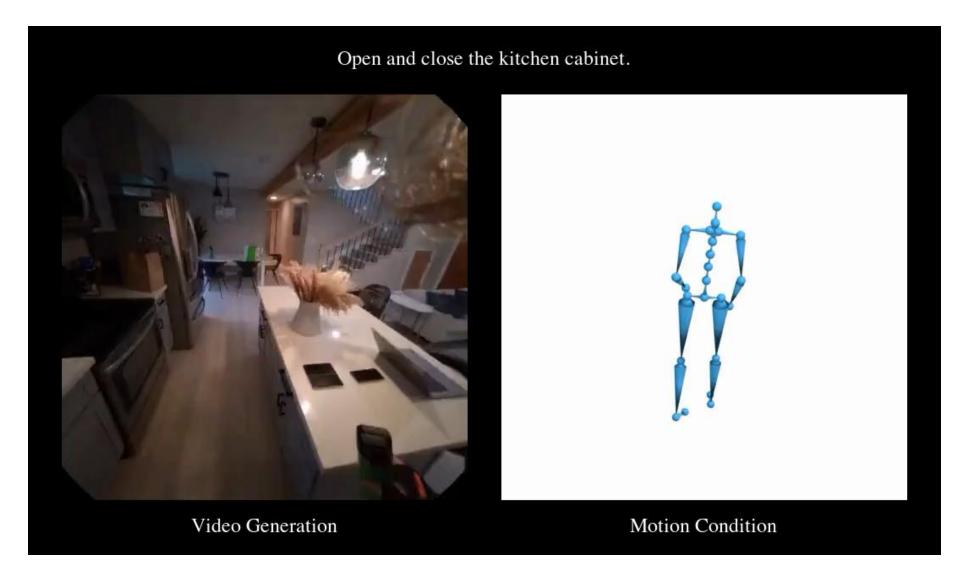
Demo: Text-to-Motion&Video



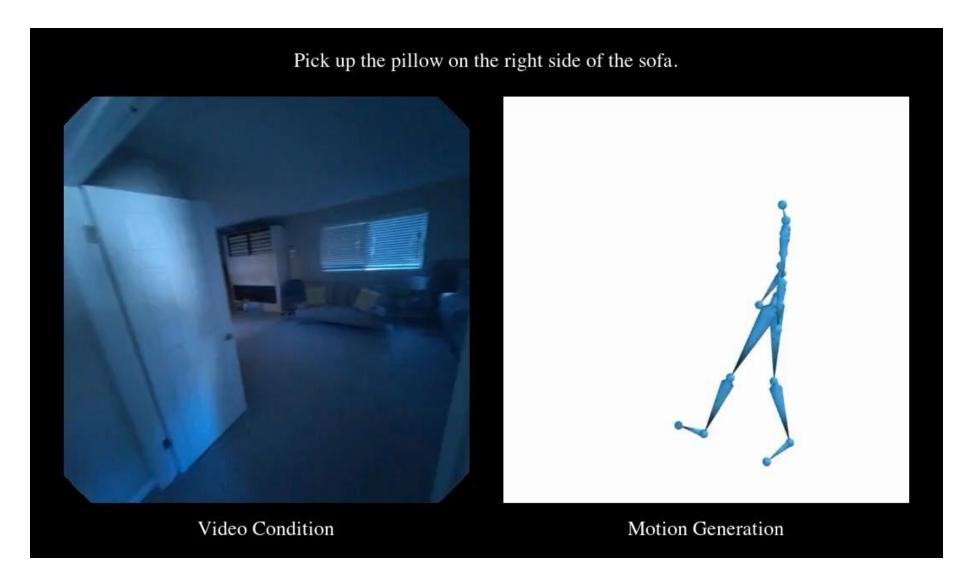
Demo: Text-to-Motion&Video



Demo: Text&Motion-to-Video



Demo: Text&Video-to-Motion



From Seeing to Acting

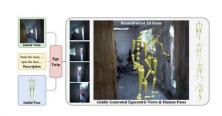
Perception & Understanding

Learn to see and reason from the first person

Learn to move and act as you see

cognitive foundation of egocentric understanding

embodied simulation



From Seeing to Acting

Perception & Understanding

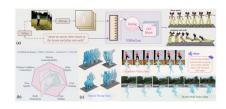
Learn to see and reason from the first person

Learn to move and act as you see

cognitive foundation of egocentric understanding

Ego-R1

embodied simulation and generalizable motion intelligence

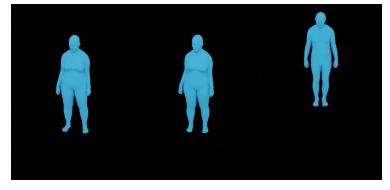


Action & Embodiment Learn to move and act as you see - Generalization

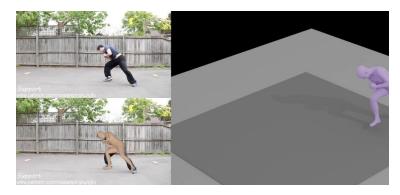
ViMoGen: The Quest for Generalizable Human Motion Generation Data, Model, and Evaluation

Challenges Towards Generalizable Motion Generation

- Data Scarcity
 - Optical MoCap Dataset
 - Limited in scale and semantic diversity
 - Web Video-based Datasets
 - Compromise motion quality
 - Exhibit semantic biases
- Transfer Knowledge from Other Modalities
 - Video generation models have rich world knowledge
 - Have limited motion quality and robustness.
- Evaluation Benchmark
 - Lack of a benchmark for comprehensive evaluation of motion generation algorithms, with a particular emphasis on generalization capability



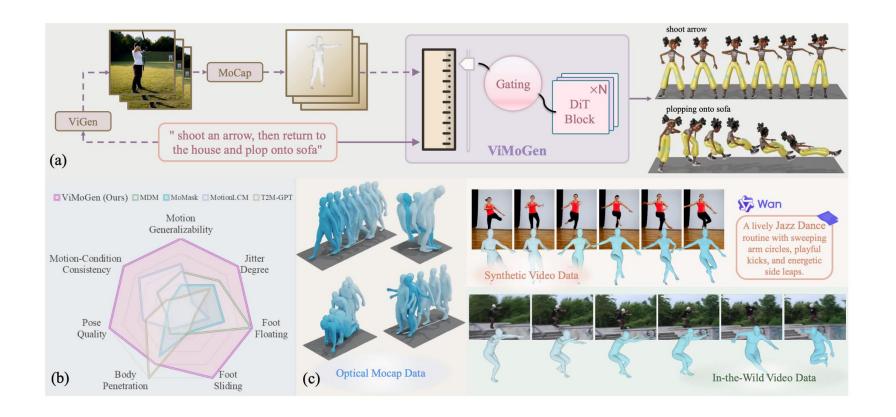
MoCap Dataset



Web Video-based Dataset

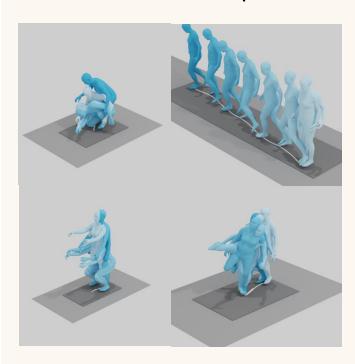
The Quest for Generalizable Motion Generation

We address generalization by focusing on three fundamental components: Data, Model, and Evaluation

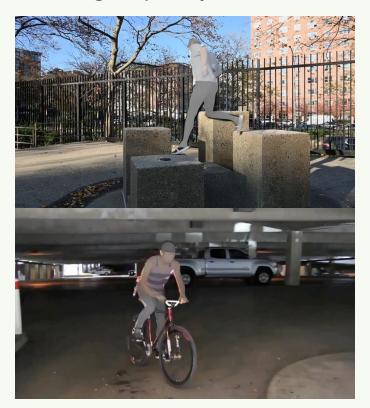


ViMoGen-228K: a Large-scale, Diverse dataset

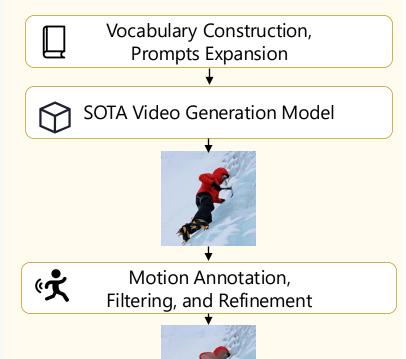
(a) Unify **30 Mocap** dataset and augment them with **text** captions.



(b) Collect **millions** of **web-videos**, annotate, and select 1% high-quality **motions**.

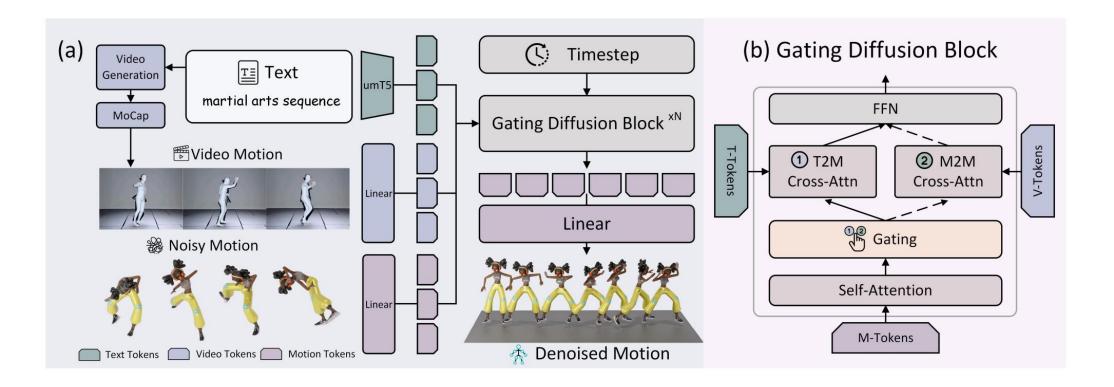


(c) Construct semantically rich action prompts, **generate** videos, and annotate **motion** labels.



ViMoGen: Unifying Video and Motion Generation Model Prior

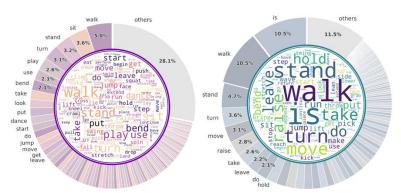
- MoGen Model: High-quality motion but poor generalization ability.
- ViGen Model: Good generalization but unsatisfied motion quality
- ViMoGen: Combine the semantic richness of video models with the high fidelity of motion-specific synthesis



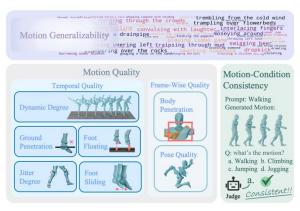
MBench: Hierarchical Benchmark with Multifaceted Assessment

Compared to existing benchmark, MBench featured with:

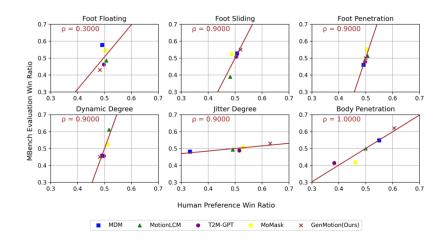
- More balanced distribution, semantically diverse prompts
- Granular and multifaceted assessment with nine dimensions.
- Highly aligned with human perception



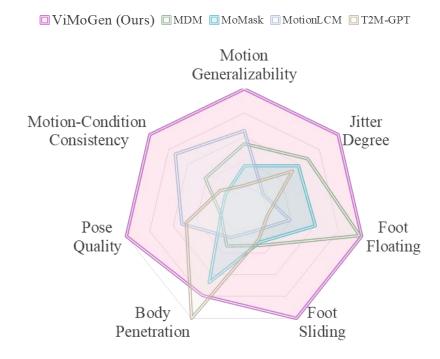
(a) Top 100 Verbs (Left: MBench. Right: HumanML3D)



(b) Evaluation Dimensions of MBench



Performance of ViMoGen

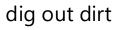


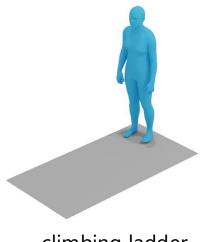
Methods	R Precision↑		EID	M-143M- J-1 D2-4	M-1437 - 1-114-A	
	Top 1	Top 2	Top 3	FID↓	MultiModal Dist↓	MultiModality ↑
TM2T (Guo et al., 2022c)	$0.424^{\pm.003}$	$0.618^{\pm.003}$	$0.729^{\pm.002}$	$1.501^{\pm.017}$	$3.467^{\pm.011}$	$2.424^{\pm .093}$
T2M (Guo et al., 2022b)	$0.455^{\pm .003}$	$0.636^{\pm.003}$	$0.736^{\pm .002}$	$1.087^{\pm.021}$	$3.347^{\pm.008}$	$2.219^{\pm.074}$
MDM (Tevet et al., 2023)	$0.320^{\pm .005}$	$0.498^{\pm.004}$	$0.611^{\pm .007}$	$0.544^{\pm.044}$	$5.566^{\pm.027}$	$2.799^{\pm.072}$
MotionDiffuse (Zhang et al., 2024b)	$0.491^{\pm.001}$	$0.681^{\pm.001}$	$0.782^{\pm.001}$	$0.630^{\pm.001}$	$3.113^{\pm.001}$	$1.553^{\pm.042}$
T2M-GPT (Zhang et al., 2023a)	$0.492^{\pm.003}$	$0.679^{\pm.002}$	$0.775^{\pm.002}$	$0.141^{\pm.005}$	$3.121^{\pm .009}$	$1.831^{\pm.048}$
MoMask (Guo et al., 2024)	$0.521^{\pm.002}$		$0.807^{\pm.002}$	$0.045^{\pm.002}$	$2.958^{\pm.008}$	$1.241^{\pm.040}$
Motion-LCM (Dai et al., 2024)	$0.502^{\pm.003}$	$0.698^{\pm.002}$	$0.798^{\pm.002}$	$0.304^{\pm.012}$	$3.012^{\pm.007}$	$2.259^{\pm .092}$
MLD (Chen et al., 2023)	$0.481^{\pm .003}$	$0.673^{\pm.003}$	$0.772^{\pm.002}$	$0.473^{\pm.013}$	$3.196^{\pm.010}$	$2.413^{\pm.079}$
MLD + ViMoGen-light (Ours)	0.542 ^{±.003}	0.733 ^{±.002}	$0.825^{\pm.002}$	$0.114^{\pm.005}$	2.826 ^{±.007}	$1.973^{\pm.074}$

ViMoGen exhibits excellent generalization capability while remaining comparable motion quality on MBench.

Our distillated version ViMoGen-light also exhibits completive performance on traditional benchmark.

Performance of ViMoGen





climbing ladder

surfing

What are Crucial for Generalization Ability?

0.0051

0.55

Knowledge from ViGen model improves generalizability.

ot		
ing		
61		

0	

Training Datasets	Motion Clip Number	Motion Condition Consistency	Motion Generalizability	Foot Sliding
HumanML3D	89k	0.41	0.44	0.0032
+ Other Optical Mocap Data	83k	0.44	0.48	0.0033
+ Visual Mocap Data	42k	0.43	0.50	0.0042

0.47

Occupant but semantically rich synthetic data is critical.



A powerful text encoder is needed.

Text Encoder	Motion Condition Consistency	Motion Generalizability	Foot Sliding	Body Penetration
CLIP	0.32	0.35	0.0023	1.39
T5-XXL	0.41	0.44	0.0032	1.05
MLLM	0.38	0.46	0.0032	1.51

+ Synthetic Video Data

Text augmentation during training helps.

14k

Training Text Style	Testing Text Style	Motion Condition Consistency	Motion Generalizability	Foot Sliding
Motion	Motion	0.36	0.40	0.0032
Motion	Video	0.32	0.39	0.0031
Video	Motion	0.43	0.48	0.0033
Video	Video	0.41	0.44	0.0032

From Seeing to Acting

Perception & Understanding

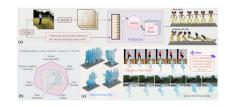
Learn to see and reason from the first person

Learn to move and act as you see

cognitive foundation of egocentric understanding

Ego-R1

embodied simulation and generalizable motion intelligence



→ see, act, and learn from the first person, just like us

The Terminator (1984)

Mission Impossible 2 (2000)

Detective Conan (1994)

Spy Kids (2001)

Iron Man (2008)

Spider-Man (2019)

Thank You

Ziwei Liu 刘子纬 Nanyang Technological University

