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Diverse Modalities

Vision-Infused Deep Audio Inpainting,
ICCV 2019



Motivation

 Audio signals often suffer from local distortions where the
Intervals are corrupted.

 Audio Inpainting: To fill the corrupted information with newly
generated samples.



Core ldea

* Formulate audio inpainting into spectrogram inpainting.
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Core ldea

« Utilize intact video to guide audio inpainting.
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Approach

* Overview: Vision-Infused Audio Inpainter (VIAI)

(a) VIAI - A

(b) VIAI - AV




VIAl-Audio Branch (VIAI-A)
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» Using the 2D Time-Frequency representation of Mel-
Spectrogram for audios.

* Formulating the problem into inpainting spectrogram with
Generative Adversarial Networks



VIAlI-Audio-Visual Branch (VIAI-AV)

 Learning synchronization between intact video and audio.

« Concatenate the synchronized features for reconstruction.

oo

waveNet
| Decoder

(b) VIAI - AV




VIAlI-Audio-Visual Branch (VIAI-AV)

* Probe loss of using intact audio for reconstruction (VIAI-AA').

 Forcing the network to learn from bottleneck features.

waveNet ,
Decoder : ‘

Reconstruction




WaveNet Decoder

* WaveNet is used to convert Mel-spectrogram back to raw audio.

« Utilizing the given audio for better restoration.

waveNet ‘
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Experiments

Score \ Approach SampleRNN [33] Visual2Sound [56] bi-SampleRNN bi-Visual2Sound VIAI-A VIAI-AV VIAI-AA’

PSNR 9.1 10.2 12.8 13.6 22.2 23.2 26.6
SSIM 0.33 0.35 0.38 0.41 0.61 0.64 0.75
SDR 4.89 3.70 4.20 4.72 6.54 6.63 6.89

OPS 51.1 513 51.2 52.2 52.4 56.3 56.7
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Conclusions

 Discriminative representation’s is capable of distilling and
disentangling information from both modalities.

* Audio problems can be easier solved by operating on
spectrograms using vision techniques for image processing.

« Synchronization between audio and visual information is the
fundamental self-supervision which is crucial for various tasks.



Diverse Poses

Delving Deep into Hybrid Annotations for 3D Human Recovery
in the wild, ICCV 2019



Background (l)

g

Virtual.Fitting.Room

Sl

3D Human Reconstruction Virtual Try-on

« 3D Human Reconstruction means acquire 3D human representation from given images or videos.
It can facilitate many technologies such as augmented reality and virtual try-on.



Background (ll)

Triangle mesh based 3D model |

Sl

SMPL

« We use SMPL, a parametric triangle mesh based 3D model to represent 3D human.
« SMPL is parameterized by two parameters: pose parameters 8 € R’? and shape parameters p € R1°.
« To estimate 3D human representation, we only need to predict the pose and shape parameters.



Motivation

: Sparse Dense Dense In-the-wild
Annotation
2D Labeling Correspondence 3D
Examples
Annotation
Cost

* In the experiment, we first study the efficiency of different annotations.
» We study the efficiency of those annotations when serving as input and serving as supervision.

« We use per-vertex distance (PVE) as the evaluation metric.
» The experiments are conducted on COCO-DensePose, UP-3D and 3DPW.
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Framework
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» The overall framework is composed of three parts:
* Input Encoder
« Parameter Estimator
» Loss Calculator
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Learning Strategy (l)

Sparse2D Dense
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* Previous works mainly use 3D annotations and sparse 2D annotations in training.
« Sparse 2D keypoints are too sparse to provide enough guidance.

« 3D annotations are hard to acquire.

« We propose to use dense keypoints in recovering 3D human model.




Learning Strategy (ll)

DensePose Model Annotating
Dense Keypoints

IUV Maps generated
by DensePose

 DensePose build dense correspondence between 2D images and human body surface.

* For each dense keypoints, the annotations include (I, U, V). I indicates which body part this point belongs to.
(U, V) indicates the precise position.

« Dense keypoints could be annotated by human annotators without using auxiliary equipements.



Learning Strategy (lll)

Sample Dense Keypoints for training
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» We use the predicted IUV maps from DensePose model and sample dense keypoints from them.
» We conduct refinement using the accurate sparse 2D keypoints to remove erroneous IUV maps.



Experiments

Table 3. Influence of different annotations. The evaluation metrics are PVE, MPJPE and PVE-T, separately. For all metrics, lower is
better. “3D” refers to paired in-the-wild 3D annotations. “20% 3D” refers to 20% randomly selected 3D annotations. “Sparse 2D’ refers

to sparse 2D keypoints. “Dense” refers to dense correspondence, namely, IUV maps generated by DensePose [ 1, 19].
Sup iﬁ;llftlin - 3DS§LarIz:n2$I§ & |20% ;;lfel)zglse & 3D & Sparse 2D |Dense & Sparse 2D| Sparse 2D Only
IUV Only 120.0/103.1/31.8|125.0/107.2/32.6 |125.2/106.4 /32.1|138.7/121.2/54.7| 204.3/177.0/92.1
Segment Only |123.0/105.1/32.7|126.7/110.0/33.2 |124.8/107.8/31.7|147.4/130.1/55.9| 203.8/176.7/93.3
Image Only |123.7/105.9/30.9|127.5/110.6/32.2 ({127.4/108.5/30.7{137.7/120.3 /51.7{203.2/178.5/106.2
Image & IUV  [122.4/105.1/30.2|125.0/107.6/32.1 {125.5/107.3/30.7{133.8/117.2/52.5|197.3/172.8/107.9

Image & Segment

121.5/104.3 /31.0

126.4/107.0/31.6

125.8/106.8/31.5

142.2/124.2 / 56.6

201.2/177.5/101.7




Delving Deep into Hybrid Annotations for 3D Human Recovery

Paper ID 2209

This video is composed of two parts:
l. Influence of different annotations
Il. Comparison with previous state-of-the-arts.



Diverse Textures

Learning to Synthesis Fashion Textures,
(in submission)



Fashion Texture Synthesis

* Use Gram matrix as texture
feature to synthesize images

* Flexible
* Visually pleasing

Texture Feature
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Fashion Texture Synthesis

* Two-step generation

Generator

ShapefPose

» Synthesizer >

Texture

Synthesized



Generative Framework

..................................

X Gram matrix

* Training Gram-WAE-GAN
* Reconstruct the input Gram matrix
* Match the latent distribution with the prior

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, & Bernhard Schoelkopf. Wasserstein Auto-Encoders. In ICLR 2018.



Recursive Structure
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PCA w/o GMM PCA
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L. A. Gatys, A. S. Ecker, & M. Bethge (2015). Texture Synthesis Using Convolutional Neural Networks. In
Advances in Neural Information Processing Systems 28.



Gram Transformation
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 Transform the Gram matrix to a low d
* Number of parameters: 184M -> 10.8M

imensional vector



Results

DistGAN

Method FID

DistGAN [87] 41.97

Baseline PSGAN [5] 77.10
TextureGAN [93]  44.38

Ablation FC transformation  37.32
Study MLP structure ' 45.72
No GMM sampling 40.83

Ours 37.74

PSGAN

TextureGAN

Qurs




Results

PSGAN Test Image

Ours
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Diverse Categories

Large-Scale Long-Tailed Recognition in an Open World,
CVPR 2019
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Open Long-Tailed Recognition

Open World

Head Classes Tail Classes | Open Classes



Open Long-Tailed Recognition

Open World

Knowledge Transfer

— |

Head Classes Tail Classes | Open Classes



Open Long-Tailed Recognition

Open World

Knowledge Transfer
Sensitivity to Novelty

— |

Head Classes Tail Classes Open Classes



Open Long-Tailed Recognition

Avoid Forgetting

/

Knowledge Transfer
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Open Long-Tailed Recognition

. . Open Set Recognition
Imbalanced Classification A
| \
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Imbalanced Classification

(metric learning, re-sampling, re-weighting)

Few-Shot Learning

(meta learning, classifier dynamics)

train test

Sensitivity to Novelty X

Avoid Forgetting X

Open Long-Tailed Recognition

(dynamic meta-embedding)

Open Set Recognition

(distribution rectification, out-of-distribution detection)

train test
Knowledge Transfer X

=

train | test

Knowledge Transfer Sensitivity to Novelty

Avoid Forgetting




Open Long-Tailed Recognition

(dynamic meta-embedding)

=

train | test

Knowledge Transfer Sensitivity to Novelty

Avoid Forgetting



visual memory

top-down attention
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associative memory
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ImageNet-LT Benchmark

Absolute Performance Gain: ~20%

Places-LLT Benchmark

Absolute Performance Gain: ~10%

MS1IM-LT Benchmark

Absolute Performance Gain: ~2%

1200

1000 A

800 ~

600 -

400 +

200 ~

5000 4

4000 A

3000 +

2000 -+

1000 A

600

pitcher

prtidge

swimming cap

water snake

amusement park

[a—

365

0 35000

70000




Overall F1 Score on ImageNet-LT, Places-LT and MS1IM-LT Benchmarks

Methods ImageNet-LT Places-LT MSIM-LT
Plain Model 0.295 0.366 0.738
Sample Re-weighting (Focal Loss) 0.371 0.453 -
Metric Learning (Range Loss) 0.373 0.457 0.722
Open Set Recognition (OpenMax) 0.368 0.458 -
Few-shot Learning (FSLwF) 0.347 0.375 -
Dynamic Meta-Embedding 0.474 0.464 0.745
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Diverse Relations

Learning Diverse Fashion Collocation by Neural Graph Filtering,
(in submission)



Motivation

* Increasing demand for intelligent fashion recommendation system
» A successful fashion collocation framework should be featured with two desired
properties: Flexibility and Diversity.

 Existing work can only accept fashion sets with fixed length, e.g., the four-
garment set{tops, outerwear, bottoms and shoes} and limited categories, e.g.,
discarding accessories, bags and hats.



Overall Framework of Diverse Fashion Graph Filtering

edge aggregation

Compatibility Score
w/ diverse styles
Scomp = f(Xi ) Xk )

— visual A
embeds

4 garments - x S t 5 @
1, ey k e ”
I oC
Conv Neural ﬁ @ é |
)
)N Network cdicor L > Q Il
et
4 garments Analogous Complementary
. o o Ground truth:1.0 Ground truth:1.0
input garment sets Nerual Graph Filtering Prediction:0.978  Prediction:0.943
w/ flexible length f(*)

We firstly use the convolutional neural networks to extract the visual embeddings of the input garment sets with flexible length, and then
consider each visual embedding as a node input to the neural graph network, which not only computes the node features, but also
implements edge feature aggregation. Note that one node could appear in several collocations. Afterwards a compatibility predictor
calculates the compatibility scores for diverse styled garment sets.



Architecture of Neural Graph Filtering
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* The graph network architecture constructed using edge feature aggregation operations.

* In the last layer, edge information gathered at all the nodes are pooled to compute a compatibility
score, and an optional fashion style distribution for a compatible garment set.




Architecture of Neural Graph Filtering

Style Classifier
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* Graph edge Filtering at one layer: aggregates all the edge information connecting
to the node under consideration.



Quantitative Evaluation

dataset Polyvore Polyvore-D Polyvore Polyvore-D
Metric AUC FITB | AUC FITB | H.(%) AUC FITB | AUC FITB
Bi-LSTM (Han et al. 2017) 0.65 39.7 0.62 394 5.0 Euclidean Distance 0.85 54.7 0.82 53.4
CSN (Veit, Belongie, and Karaletsos 2017) 0.83 54.0 0.82 52.5 0 Imbalanced Collocation Handling 0.85 55.1 0.83 54.2
TransNFCM (Xun Yang 2019) 0.75 - - - - Baseline (Node) 0.92 55.3 0.84 47.8
Wardrobe (Wei-Lin Hsiao 2018) 0.88 - - - 7.5 Baseline (Edge Max Pooling) 0.93 57.7 0.87 52.8
Type Aware (Vasileva et al. 2018) 0.86 56.2 0.84 54.9 5.0 Baseline (Edge Avg Pooling) 0.93 58.0 0.86 53.8
Neural Graph Filtering (Ours) 0.94 58.8 0.88 55.1 82.5 Neural Graph Filtering (Ours) 0.94 58.8 0.88 55.1




Fill-in-blank

given a sequence of fashion items, ask for the most compatible one from the four choices
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Fashion Compatibility Prediction

score a candidate outfit, higher score means more compatibility

0.805 -

— compatible

0.994 -

0.041 not compatible




Diverse Fashion Collocations

Given 1 query item, generate fashion sets of diverse styles and flexible length
Dataset: Polyvore

query item

Analogous  Complementary Triadic Same Monochromatic Other



Diverse Fashion Collocations

Given 1 query item, generate fashion sets of diverse styles and flexible length

query item

Analogous Complementary Triadic Same Monochromatic Other



Diverse Fashion Collocations

Given 1 query item, generate fashion sets of diverse styles and flexible length

R .‘

Analogous Complementary Triadic

hromatic Other

©Q

query item




Diverse Fashion Collocations

Dataset: Amazon Fashion
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Diverse Fashion Collocations

Dataset: Amazon Fashion
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Conclusions

* The concept of flexible and diverse fashion collocations:
» support both inputs/outputs with flexible lengths;
* generate fashion sets with diverse styles

* Novel framework of neural graph filtering

* the graph structure that explores the inter-garment relationship is more suitable for fashion
compatibility learning.

* Newly proposed benchmark and evaluation protocols
* AmazonFashion Dataset: comprises of different styles for diversity learning and evaluation



Database and Toolbox



Two New Datasets:
* Fashion Parsing Benchmark
 Fashion Recommendation Benchmark




4 MMFashion

Open-source toolbox for visual fashion analysis based on PyTorch: https://github.com/open-mmlab/mmfashion

In-Shop Clothes Retrieval

Features

* Flexible: modular design and easy to extend

* Friendly: off-the-shelf models for layman users

e Comprehensive: support a wide spectrum of fashion analysis tasks

R retrieved
query image

Fashion Attribute Prediction

Fashion Recognition and Retrieval

Fashion Landmark Detection

Fashion Parsing and Segmentation

Fashion Compatibility and Recommendation




Thanks!

Science is what we understand well enough to explain to a computer:
Art is everything else we do.

Homepage: hittps.//liuziwei/.github.io/




