

Learning Diverse Human Representation in the Wild

Ziwei Liu

The Chinese University of Hong Kong

Human-Centric Al

Human-Centric Al

Face Representations

Human Representations

Diverse Modalities

Visual-Audio Representation

Diverse Poses & Textures

Colorful 3D Human Representation

Diverse Categories & Relations

Fashion Collocation Representation

Diverse Modalities

Vision-Infused Deep Audio Inpainting, ICCV 2019

Motivation

- Audio signals often suffer from local distortions where the intervals are corrupted.
- Audio Inpainting: To fill the corrupted information with newly generated samples.

Core Idea

• Formulate audio inpainting into spectrogram inpainting.

Core Idea

• Utilize intact video to guide audio inpainting.

Approach

• Overview: Vision-Infused Audio Inpainter (VIAI)

VIAI–Audio Branch (VIAI-A)

- Using the 2D Time-Frequency representation of Mel-Spectrogram for audios.
- Formulating the problem into inpainting spectrogram with Generative Adversarial Networks

VIAI–Audio-Visual Branch (VIAI-AV)

- Learning synchronization between intact video and audio.
- Concatenate the synchronized features for reconstruction.

VIAI–Audio-Visual Branch (VIAI-AV)

- Probe loss of using intact audio for reconstruction (VIAI-AA').
- Forcing the network to learn from bottleneck features.

WaveNet Decoder

- WaveNet is used to convert Mel-spectrogram back to raw audio.
- Utilizing the given audio for better restoration.

Experiments

Score \setminus Approach	SampleRNN [33]	Visual2Sound [56]	bi-SampleRNN	bi-Visual2Sound	VIAI-A	VIAI-AV	VIAI-AA'
PSNR	9.1	10.2	12.8	13.6	22.2	23.2	26.6
SSIM	0.33	0.35	0.38	0.41	0.61	0.64	0.75
SDR	4.89	3.70	4.20	4.72	6.54	6.63	6.89
OPS	51.1	51.3	51.2	52.2	52.4	56.3	56.7

Vision-Infused Deep Audio Inpainting

Hang Zhou¹ Ziwei Liu¹ Xudong Xu¹ Ping Luo² Xiaogang Wang¹

The Chinese University of Hong Kong
The University of Hong Kong

Conclusions

• Discriminative representation's is capable of distilling and disentangling information from both modalities.

- Audio problems can be easier solved by operating on spectrograms using vision techniques for image processing.
- Synchronization between audio and visual information is the fundamental self-supervision which is crucial for various tasks.

Diverse Poses

Delving Deep into Hybrid Annotations for 3D Human Recovery in the wild, ICCV 2019

Background (I)

3D Human Reconstruction

Virtual.Fitting.Room

Virtual Try-on

- 3D Human Reconstruction means acquire 3D human representation from given images or videos.
- It can facilitate many technologies such as augmented reality and virtual try-on.

Background (II)

- We use SMPL, a parametric triangle mesh based 3D model to represent 3D human.
- SMPL is parameterized by two parameters: pose parameters $\theta \in \mathbb{R}^{72}$ and shape parameters $\beta \in \mathbb{R}^{10}$.
- To estimate 3D human representation, we only need to predict the pose and shape parameters.

Motivation

- In the experiment, we first study the efficiency of different annotations.
- We study the efficiency of those annotations when serving as input and serving as supervision.
- We use per-vertex distance (PVE) as the evaluation metric.
- The experiments are conducted on COCO-DensePose, UP-3D and 3DPW.

 $PVE = \sum_{i=1}^{O} ||P_i - \bar{P}_i||_2^2$

Framework

- The overall framework is composed of three parts:
 - Input Encoder
 - Parameter Estimator
 - Loss Calculator

Learning Strategy (I)

- Previous works mainly use 3D annotations and sparse 2D annotations in training.
- Sparse 2D keypoints are too sparse to provide enough guidance.
- 3D annotations are hard to acquire.
- We propose to use dense keypoints in recovering 3D human model.

Learning Strategy (II)

•

Annotating Dense Keypoints

IUV Maps generated by DensePose

- DensePose build dense correspondence between 2D images and human body surface.
- For each dense keypoints, the annotations include (*I*, *U*, *V*). *I* indicates which body part this point belongs to. (*U*, *V*) indicates the precise position.
- Dense keypoints could be annotated by human annotators without using auxiliary equipements.

Learning Strategy (III)

Sample Dense Keypoints for training

- We use the predicted IUV maps from DensePose model and sample dense keypoints from them.
- We conduct refinement using the accurate sparse 2D keypoints to remove erroneous IUV maps.

Experiments

Table 3. Influence of different annotations. The evaluation metrics are PVE, MPJPE and PVE-T, separately. For all metrics, lower is better. "3D" refers to paired in-the-wild 3D annotations. "20% 3D" refers to 20% randomly selected 3D annotations. "Sparse 2D" refers to sparse 2D keypoints. "Dense" refers to dense correspondence, namely, IUV maps generated by DensePose [1, 19].

Supervision \rightarrow	3D & Dense &	20% 3D & Dense &	3D & Sparse 2D	Dense & Sparse 2D	Sparse 2D Only
Input ↓	Sparse 2D	Sparse 2D	5D & Sparse 2D	Dense & Sparse 2D	Sparse 2D Only
IUV Only	120.0 / 103.1 / 31.8	125.0 / 107.2 / 32.6	125.2 / 106.4 / 32.1	138.7 / 121.2 / 54.7	204.3 / 177.0 / 92.1
Segment Only	123.0 / 105.1 / 32.7	126.7 / 110.0 / 33.2	124.8/ 107.8 / 31.7	147.4 / 130.1 / 55.9	203.8 / 176.7 / 93.3
Image Only	123.7 / 105.9 / 30.9	127.5 / 110.6 / 32.2	127.4 / 108.5 / 30.7	137.7 / 120.3 / 51.7	203.2 / 178.5 / 106.2
Image & IUV	122.4 / 105.1 / 30.2	125.0 / 107.6 / 32.1	125.5 / 107.3 / 30.7	133.8 / 117.2 / 52.5	197.3 / 172.8 / 107.9
Image & Segment	121.5 / 104.3 / 31.0	126.4 / 107.0 / 31.6	125.8 / 106.8 / 31.5	142.2 / 124.2 / 56.6	201.2 / 177.5 / 101.7

Delving Deep into Hybrid Annotations for 3D Human Recovery

Paper ID 2209

This video is composed of two parts:

- I. Influence of different annotations
- II. Comparison with previous state-of-the-arts.

Diverse Textures

Learning to Synthesis Fashion Textures, (in submission)

Fashion Texture Synthesis

- Use Gram matrix as texture feature to synthesize images
 - Flexible
 - Visually pleasing

Fashion Texture Synthesis

• Two-step generation

Generative Framework

- Training Gram-WAE-GAN
 - Reconstruct the input Gram matrix
 - Match the latent distribution with the prior

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, & Bernhard Schoelkopf. Wasserstein Auto-Encoders. In ICLR 2018.

Recursive Structure

GMM Sampling

Training GMM

Sampling

L. A. Gatys, A. S. Ecker, & M. Bethge (2015). Texture Synthesis Using Convolutional Neural Networks. In *Advances in Neural Information Processing Systems 28*.

Gram Transformation

- Transform the Gram matrix to a low dimensional vector
 - Number of parameters: 184M -> 10.8M

	Method	FID
Baseline	DistGAN [87]	41.97
	PSGAN [5]	77.10
	TextureGAN [93]	44.38
Ablation	FC transformation	37.32
Study	MLP structure	45.72
	No GMM sampling	40.83
	Ours	37.74

Results

Results

Diverse Categories

Large-Scale Long-Tailed Recognition in an Open World, CVPR 2019

Train

Test

Train

Test

Faces [Zhang et al. 2017]

Species [Van Horn et al. 2019]

Places [Wang et al. 2017]

Actions [Zhang et al. 2019]

Imbalanced Classification

(metric learning, re-sampling, re-weighting)

Few-Shot Learning

(meta learning, classifier dynamics)

(dynamic meta-embedding)

FLY

ImageNet-LT Benchmark

Absolute Performance Gain: ~20%

Places-LT Benchmark

Absolute Performance Gain: ~10%²

MS1M-LT Benchmark

Absolute Performance Gain: ~2%

Methods	ImageNet-LT	Places-LT	MS1M-LT
Plain Model	0.295	0.366	0.738
Sample Re-weighting (Focal Loss)	0.371	0.453	-
Metric Learning (Range Loss)	0.373	0.457	0.722
Open Set Recognition (OpenMax)	0.368	0.458	-
Few-shot Learning (FSLwF)	0.347	0.375	-
Dynamic Meta-Embedding	0.474	0.464	0.745

Methods	ImageNet-LT	Places-LT	MS1M-LT
Plain Model	0.295	0.366	0.738
Sample Re-weighting (Focal Loss)	0.371	0.453	-
Metric Learning (Range Loss)	0.373	0.457	0.722
Open Set Recognition (OpenMax)	0.368	0.458	-
Few-shot Learning (FSLwF)	0.347	0.375	-
Dynamic Meta-Embedding	0.474	0.464	0.745

Methods	ImageNet-LT	Places-LT	MS1M-LT
Plain Model	0.295	0.366	0.738
Sample Re-weighting (Focal Loss)	0.371	0.453	-
Metric Learning (Range Loss)	0.373	0.457	0.722
Open Set Recognition (OpenMax)	0.368	0.458	-
Few-shot Learning (FSLwF)	0.347	0.375	-
Dynamic Meta-Embedding	0.474	0.464	0.745

Methods	ImageNet-LT	Places-LT	MS1M-LT
Plain Model	0.295	0.366	0.738
Sample Re-weighting (Focal Loss)	0.371	0.453	-
Metric Learning (Range Loss)	0.373	0.457	0.722
Open Set Recognition (OpenMax)	0.368	0.458	-
Few-shot Learning (FSLwF)	0.347	0.375	-
Dynamic Meta-Embedding	0.474	0.464	0.745

Methods	ImageNet-LT	Places-LT	MS1M-LT
Plain Model	0.295	0.366	0.738
Sample Re-weighting (Focal Loss)	0.371	0.453	-
Metric Learning (Range Loss)	0.373	0.457	0.722
Open Set Recognition (OpenMax)	0.368	0.458	-
Few-shot Learning (FSLwF)	0.347	0.375	-
Dynamic Meta-Embedding	0.474	0.464	0.745

Diverse Relations

Learning Diverse Fashion Collocation by Neural Graph Filtering, (in submission)

Motivation

- Increasing demand for intelligent fashion recommendation system
- A successful fashion collocation framework should be featured with two desired properties: Flexibility and Diversity.
- Existing work can only accept fashion sets with *fixed length*, e.g., the fourgarment set{tops, outerwear, bottoms and shoes} and *limited categories*, e.g., discarding accessories, bags and hats.

Overall Framework of Diverse Fashion Graph Filtering

We firstly use the convolutional neural networks to extract the visual embeddings of the input garment sets with **flexible** length, and then consider each visual embedding as a node input to the neural graph network, which not only computes the node features, but also implements edge feature aggregation. Note that one node could appear in several collocations. Afterwards a compatibility predictor calculates the compatibility scores for **diverse** styled garment sets.

Architecture of Neural Graph Filtering

- The graph network architecture constructed using **edge feature aggregation** operations.
- In the last layer, edge information gathered at all the nodes are pooled to compute a compatibility score, and an optional fashion style distribution for a compatible garment set.

Architecture of Neural Graph Filtering

• Graph edge Filtering at **one layer**: aggregates all the edge information connecting to the node under consideration.

Quantitative Evaluation

dataset	Poly	vore	Polyv	ore-D			Poly	vore	Polyv	vore-D
Metric	AUC	FITB	AUC	FITB	H.(%)		AUC	FITB	AUC	FITB
Bi-LSTM (Han et al. 2017)	0.65	39.7	0.62	39.4	5.0	Euclidean Distance	0.85	54.7	0.82	53.4
CSN (Veit, Belongie, and Karaletsos 2017)	0.83	54.0	0.82	52.5	0	Imbalanced Collocation Handling	0.85	55.1	0.83	54.2
TransNFCM (Xun Yang 2019)	0.75	-	-	-	-	Baseline (Node)	0.92	55.3	0.84	47.8
Wardrobe (Wei-Lin Hsiao 2018)	0.88	-	-	-	7.5	Baseline (Edge Max Pooling)	0.93	57.7	0.87	52.8
Type Aware (Vasileva et al. 2018)	0.86	56.2	0.84	54.9	5.0	Baseline (Edge Avg Pooling)	0.93	58.0	0.86	53.8
Neural Graph Filtering (Ours)	0.94	58.8	0.88	55.1	82.5	Neural Graph Filtering (Ours)	0.94	58.8	0.88	55.1

Fill-in-blank

given a sequence of fashion items, ask for the most compatible one from the four choices

Fashion Compatibility Prediction

score a candidate outfit, higher score means more compatibility

compatible

Given 1 query item, generate fashion sets of diverse styles and flexible length Dataset: Polyvore

Given 1 query item, generate fashion sets of diverse styles and flexible length

Given 1 query item, generate fashion sets of diverse styles and flexible length

Dataset: Amazon Fashion

Analogous

Complementary

query item

Triadic

Dataset: Amazon Fashion

query item

query item

A CONTRACTOR

Analogous

us Complementary

Triadic Same

Conclusions

- The concept of **flexible** and **diverse** fashion collocations:
 - support both inputs/outputs with flexible lengths;
 - generate fashion sets with diverse styles
- Novel framework of neural graph filtering
 - the graph structure that explores the inter-garment relationship is more suitable for fashion compatibility learning.
- Newly proposed benchmark and evaluation protocols
 - *AmazonFashion* Dataset: comprises of different styles for diversity learning and evaluation

Database and Toolbox

Two New Datasets:

- Fashion Parsing Benchmark
- Fashion Recommendation Benchmark

Open-source toolbox for visual fashion analysis based on PyTorch: https://github.com/open-mmlab/mmfashion

Features

- Flexible: modular design and easy to extend
- Friendly: off-the-shelf models for layman users
- Comprehensive: support a wide spectrum of fashion analysis tasks
 - ✓ Fashion Attribute Prediction
 - ✓ Fashion Recognition and Retrieval
 - ✓ Fashion Landmark Detection
 - Fashion Parsing and Segmentation
 - Fashion Compatibility and Recommendation

Thanks!

Science is what we understand well enough to explain to a computer. Art is everything else we do.

Homepage: <u>https://liuziwei7.github.io/</u>