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Diverse Modalities

Vision-Infused Deep Audio Inpainting, 
ICCV 2019



Motivation

• Audio signals often suffer from local distortions where the 
intervals are corrupted.

• Audio Inpainting: To fill the corrupted information with newly 
generated samples.

Inpainted Audio

Corrupted Audio



Core Idea
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• Formulate audio inpainting into spectrogram inpainting.



Core Idea
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Intact Video

Corrupted Audio

infuse Information

Corrupted 
Spectrogram 

Inpainted
Spectrogram 

Inpaint

• Utilize intact video to guide audio inpainting.



Approach
• Overview: Vision-Infused Audio Inpainter (VIAI)



VIAI–Audio Branch (VIAI-A)

• Using the 2D Time-Frequency representation of Mel-
Spectrogram for audios.

• Formulating the problem into inpainting spectrogram with 
Generative Adversarial Networks



VIAI–Audio-Visual Branch (VIAI-AV)
• Learning synchronization between intact video and audio.

• Concatenate the synchronized features for reconstruction.



VIAI–Audio-Visual Branch (VIAI-AV)
• Probe loss of using intact audio for reconstruction (VIAI-AA’).

• Forcing the network to learn from bottleneck features.



WaveNet Decoder
• WaveNet is used to convert Mel-spectrogram back to raw audio.

• Utilizing the given audio for better restoration.



Experiments





Conclusions

• Discriminative representation’s is capable of distilling and 
disentangling information from both modalities.

• Audio problems can be easier solved by operating on 
spectrograms using vision techniques for image processing.

• Synchronization between audio and visual information is the 
fundamental self-supervision which is crucial for various tasks.



Diverse Poses

Delving Deep into Hybrid Annotations for 3D Human Recovery 
in the wild, ICCV 2019



Background (I)

• 3D Human Reconstruction means acquire 3D human representation from given images or videos.
• It can facilitate many technologies such as augmented reality and virtual try-on.

3D Human Reconstruction Virtual Try-on



Background (II)

Triangle	mesh	based	3D	model

SMPL

• We use SMPL, a parametric triangle mesh based 3D model to represent 3D human.  
• SMPL is parameterized by two parameters: pose parameters 𝜃 ∈ ℝ$% and shape parameters  𝛽 ∈ ℝ'(.
• To estimate 3D human representation, we only need to predict the pose and shape parameters.



Motivation

• In the experiment, we first study the efficiency of different annotations.
• We study the efficiency of those annotations when serving as input and serving as supervision. 
• We use per-vertex distance (PVE) as the evaluation metric.
• The experiments are conducted on COCO-DensePose, UP-3D and 3DPW.



Framework

• The overall framework is composed of three parts: 
• Input Encoder   
• Parameter Estimator   
• Loss Calculator



Learning Strategy (I)

• Previous works mainly use 3D annotations and sparse 2D annotations in training.
• Sparse 2D keypoints are too sparse to provide enough guidance.
• 3D annotations are hard to acquire.
• We propose to use dense keypoints in recovering 3D human model.

Sparse2D 
Loss 𝐿%*

3D Loss 𝐿+*
Dense 

Keypoints
Loss 𝐿,-./-



Learning Strategy (II)

DensePose Model

• DensePose build dense correspondence between 2D images and human body surface. 
• For each dense keypoints, the annotations include (𝐼, 𝑈, 𝑉).  𝐼 indicates which body part this point belongs to. 

𝑈, 𝑉 	indicates the precise position.
• Dense keypoints could be annotated by human annotators without using auxiliary equipements.

IUV Maps generated 
by DensePose

Annotating 
Dense Keypoints



Learning Strategy (III)

• We use the predicted IUV maps from DensePose model and sample dense keypoints from them.
• We conduct refinement using the accurate sparse 2D keypoints to remove erroneous IUV maps.

Sample Dense Keypoints for training



Experiments





Diverse Textures

Learning to Synthesis Fashion Textures, 
(in submission)



Fashion	Texture	Synthesis

• Use	Gram	matrix	as	texture	
feature	to	synthesize	images

• Flexible
• Visually	pleasing

Texture SynthesizedPose



Fashion	Texture	Synthesis

• Two-step	generation
Texture SynthesizedPose



Generative	Framework

• Training	Gram-WAE-GAN
• Reconstruct	the	input	Gram	matrix
• Match	the	latent	distribution	with	the	prior

Ilya	Tolstikhin,	Olivier	Bousquet,	Sylvain	Gelly,	&	Bernhard	Schoelkopf.	Wasserstein	Auto-Encoders.	In	ICLR	2018.



Recursive	Structure

• Model	a	set	of	Gram	matrices	
from	multi-granularity	levels

Shallow Mixed



GMM	Sampling

Training	GMM

Sampling

L.	A.	Gatys,	A.	S.	Ecker,	&	M.	Bethge (2015).	Texture	Synthesis	Using	Convolutional	Neural	Networks.	In	
Advances	in	Neural	Information	Processing	Systems	28.



Gram	Transformation

• Transform	the	Gram	matrix	to	a	low	dimensional	vector
• Number	of	parameters:	184M	->	10.8M



Results



Results



Diverse Categories

Large-Scale Long-Tailed Recognition in an Open World, 
CVPR 2019
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Faces [Zhang et al. 2017] Places [Wang et al. 2017]

Actions [Zhang et al. 2019]Species [Van Horn et al. 2019]
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?
Open Long-Tailed Recognition

Open World

Imbalanced Classification

Few-shot Learning

Head Classes Tail Classes Open Classes

Open Set Recognition



Imbalanced Classification
(metric learning, re-sampling, re-weighting)

test train testtrain

Few-Shot Learning
(meta learning, classifier dynamics)

Open Set Recognition
(distribution rectification, out-of-distribution detection)

Open Long-Tailed Recognition
(dynamic meta-embedding)

testtrain train test

Sensitivity to Novelty Avoid Forgetting

Knowledge Transfer Knowledge Transfer Sensitivity to Novelty

Avoid Forgetting



train test

Open Long-Tailed Recognition
(dynamic meta-embedding)

Knowledge Transfer Sensitivity to Novelty

Avoid Forgetting
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Head Classes Tail Classes
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Head Classes Tail Classes
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ImageNet-LT Benchmark

Absolute Performance Gain: ~20%

Places-LT Benchmark

MS1M-LT Benchmark

Absolute Performance Gain: ~10%

Absolute Performance Gain: ~2%



Methods ImageNet-LT Places-LT MS1M-LT
Plain Model 0.295 0.366 0.738
Sample Re-weighting (Focal Loss) 0.371 0.453 -
Metric Learning (Range Loss) 0.373 0.457 0.722
Open Set Recognition (OpenMax) 0.368 0.458 -
Few-shot Learning (FSLwF) 0.347 0.375 -

Dynamic Meta-Embedding 0.474 0.464 0.745

Overall F1 Score on ImageNet-LT, Places-LT and MS1M-LT Benchmarks
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Few shot



Diverse Relations

Learning Diverse Fashion Collocation by Neural Graph Filtering, 
(in submission)



Motivation

• Increasing	demand	for	intelligent	fashion	recommendation	system
• A	successful	fashion	collocation	framework	should	be	featured	with	two	desired	
properties:	Flexibility and	Diversity.

• Existing	work	can	only	accept	fashion	sets	with	fixed	length,	e.g.,	the	four-
garment	set{tops,	outerwear,	bottoms	and	shoes}	and	limited	categories,	e.g.,	
discarding	accessories,	bags	and	hats.



Overall Framework of Diverse Fashion Graph Filtering 

We	firstly	use	the	convolutional	neural	networks	to	extract	the	visual	embeddings	of	the	input	garment	sets	with	flexible	length,	and	then	
consider	each	visual	embedding	as	a	node	input	to	the	neural	graph	network,	which	not	only	computes	the	node	features,	but	also	
implements	edge	feature	aggregation.	Note	that	one	node	could	appear	in	several	collocations.	Afterwards	a	compatibility	predictor	
calculates	the	compatibility	scores	for	diverse	styled	garment	sets.	



Architecture of Neural Graph Filtering

• The	graph	network	architecture	constructed	using	edge	feature	aggregation	operations.	

• In	the	last	layer,	edge	information	gathered	at	all	the	nodes	are	pooled	to	compute	a	compatibility	
score,	and	an	optional	fashion	style	distribution	for	a	compatible	garment	set.	



Architecture of Neural Graph Filtering

• Graph	edge	Filtering	at	one	layer:	aggregates	all	the	edge	information	connecting	
to	the	node	under	consideration.



Quantitative Evaluation



Fill-in-blank
given	a	sequence	of	fashion	items,	ask	for	the	most	compatible	one		from	the	four	choices

？

A B C D

？

A B C D



Fashion	Compatibility	Prediction
score	a	candidate	outfit,	higher	score	means	more	compatibility

0. 994

0.805

0. 041

compatible

not compatible



Diverse	Fashion	Collocations
Given	1	query	item,	generate	fashion	sets	of	diverse styles	and	flexible length
Dataset:	Polyvore

query item

Analogous Complementary Triadic Same Monochromatic Other
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Diverse	Fashion	Collocations
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Diverse	Fashion	Collocations
Dataset:	Amazon	Fashion

query item Analogous						Complementary						Triadic														Same													Monochromatic			Other

query item



Diverse	Fashion	Collocations
Dataset:	Amazon	Fashion

query item
Analogous						Complementary				Triadic												Same								Monochromatic			Other

query item



Conclusions

• The	concept	of	flexible and	diverse fashion	collocations:	
• support	both	inputs/outputs	with	flexible	lengths;	
• generate	fashion	sets	with	diverse	styles

• Novel	framework	of	neural	graph	filtering
• the	graph	structure	that	explores	the	inter-garment	relationship	is	more	suitable	for	fashion
compatibility	learning.	

• Newly	proposed	benchmark	and	evaluation	protocols
• AmazonFashion Dataset:	comprises	of	different	styles	for	diversity	learning	and	evaluation	



Database and Toolbox



Two New Datasets:
• Fashion Parsing Benchmark
• Fashion Recommendation Benchmark



Open-source toolbox for visual fashion analysis based on PyTorch: https://github.com/open-mmlab/mmfashion



Thanks! 

Science is what we understand well enough to explain to a computer. 
Art is everything else we do.

Homepage: https://liuziwei7.github.io/


