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Human-centric Analysis
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Face Recognition




Human-centric Analysis

Fashion Understanding




Overall Pipeline

Clothes Detection
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Clothes Detection

A special class of general object detection
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Clothes Alignment

A set of fashion landmarks

Collars
Cuffs
Waistlines
Hemlines




Clothes Alignment

More challenging than human pose estimation

(b) Fashion Landmarks @Human Joints (¢)
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Clothes Alignment

Reduce variations by pseudo-labels
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Obtain codebook by k-means clustering in label space



Clothes Alignment
Reduce variations by pseudo-labels

Stage 3
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Clothes Alignment

Performance

DeepPose (stage 1)
DeepPose
IDPR
[_IDFA (stage 1)
B DFA

o
o

a
b
.gfos
8

&
'

&
[




Clothes Alignment

Relationship to multi-task learning
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Clothes Alignment

Relationship to multi-task learning

=== FashionNet w/o Attributes
wemm=FashionNet
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Clothes Alignment

More effective representation

. Full Image %, Bounding Box Human Joints & Fashion Landmarks
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Clothes Recognition

Think about the ultimate goal

Has-button

-----
o
e DO

DO
oooooo
'''''''
o oo

% o KRX
Street-to-shop Fashion Assistant

Cloth Spotting in Video



Clothes Recognition

The interplay between identities and attributes
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Clothes Recognition

The interplay between identities and attributes
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Attributes facilitate identification. Identification discovers attributes.
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Clothes Recognition

Attributes are noisy and imbalanced
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Clothes Recognition
The number of identities are huge

Positive Pair

Embedc 1111_1
Margin (m)

Negative Pair

Hard Negative Mining

Millions of fashion identities



Clothes Recognition

In-shop Clothes Retrieval
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Clothes Recognition

Consumer-to-shop Clothes Retrieval
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Clothes Recognition

Further Analysis
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FashionNet

End-to-end System
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Landmark Visibility

(a) FashionNet




FashionNet

Forward Pass

landmark landmark
category attrilfutes triplet @ location visibility
3 y

fc7 pose

fc6 global fc6 local fc6 _pose
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FashionNet

Backward Pass

landmark landmark
category attrilfutes triplet @ location visibility
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Conclusions

 Large-scale Fashion Dataset DeepFashion
* Clothes Alignment by Fashion Landmarks

* End-to-end System with Heterogeneous Supervisions



Future Work

* From “detection + alignment” to “parsing”
* From “pre-defined attributes™ to “free-form descriptions”

* From “single clothes modeling” to “outfit understanding”
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DeepFashion Project by MMLAB, CUHK

Project Page: http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html



