Al-Synthesized Media and How to Detect Them

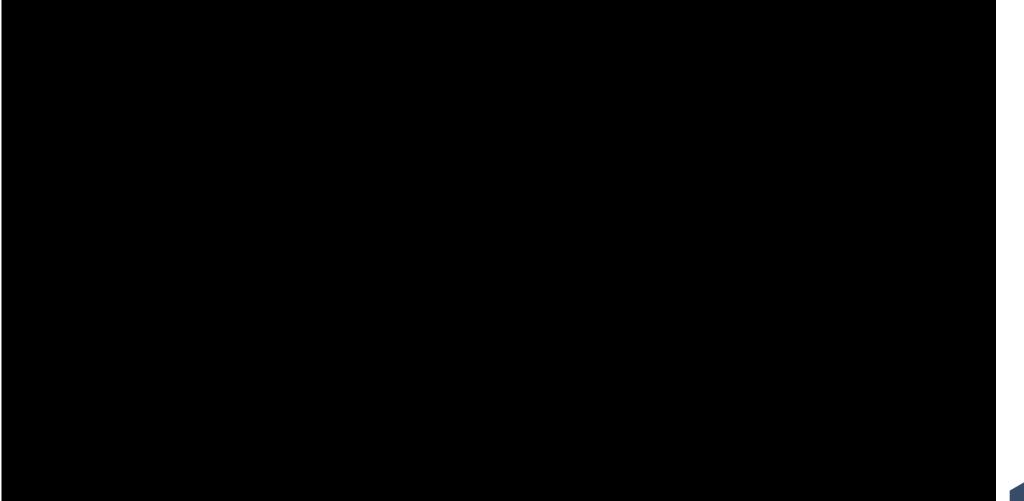
Ziwei Liu

Nanyang Technological University

S-LAB FOR ADVANCED INTELLIGENCE

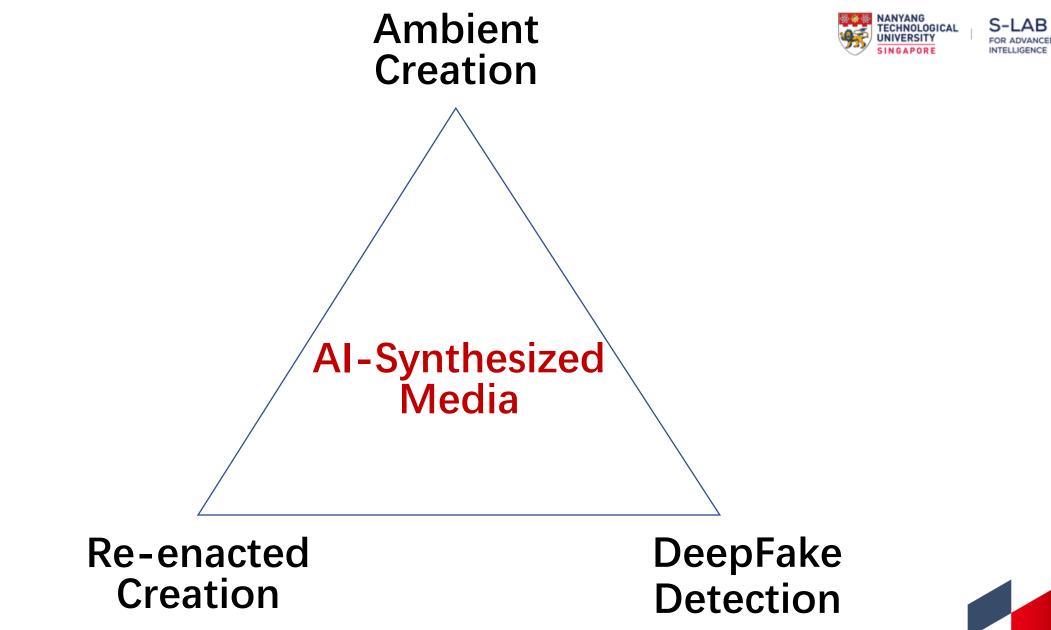
Visual Illusion

Al is Good at Creating Illusioins

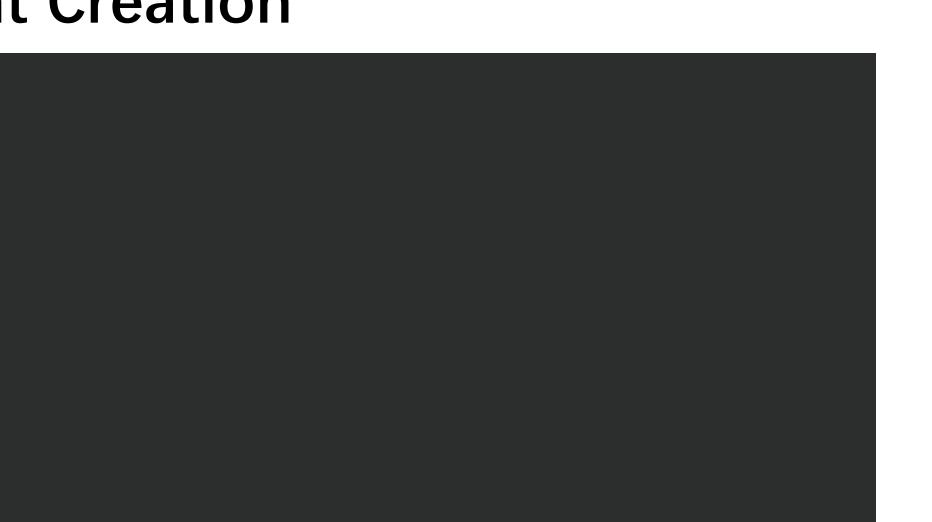


Al is Good at Creating Illusioins

Weare elaverse 2



Ambient Creation



NANYANG TECHNOLOGICAL UNIVERSITY

SINGAPORE

S-LAB

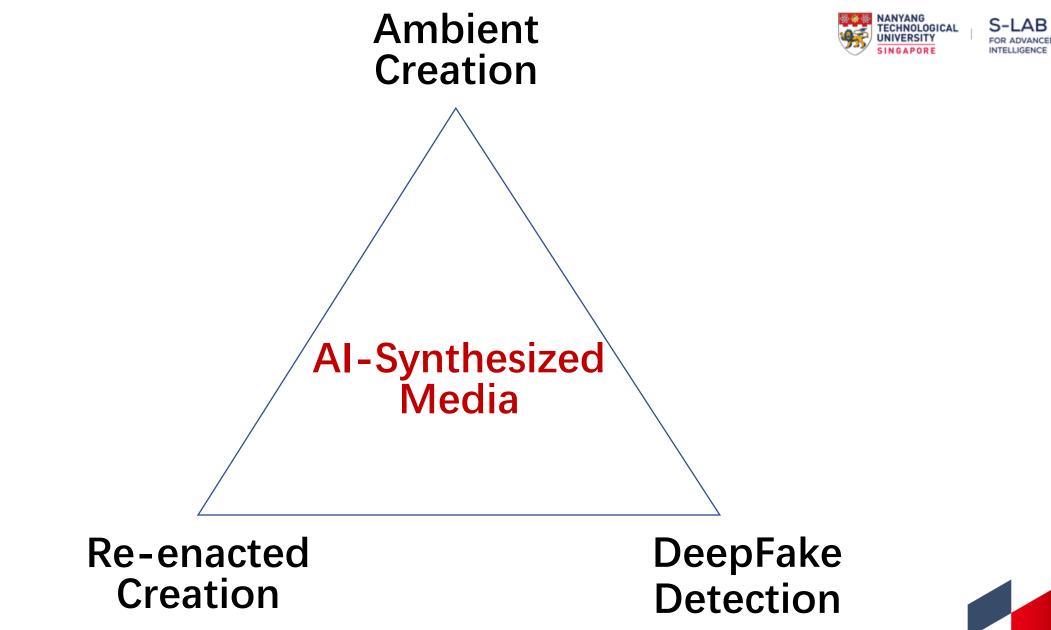
FOR ADVANCED

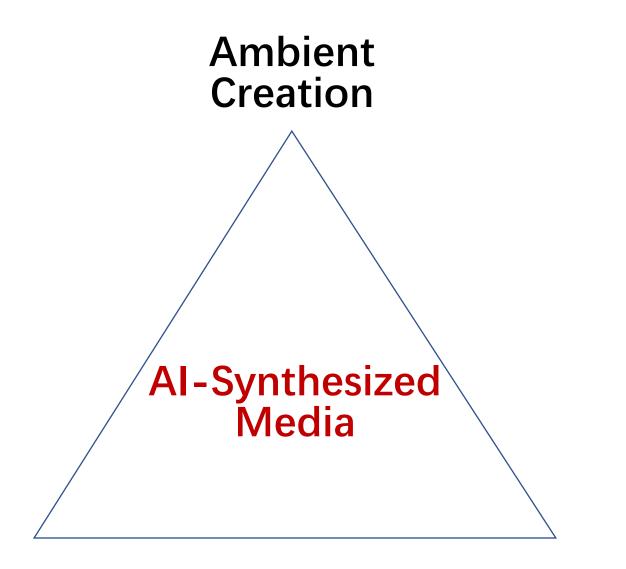
INTELLIGENCE

i 🖗 🚯

Re-enacted Creation

DeepFake Detection

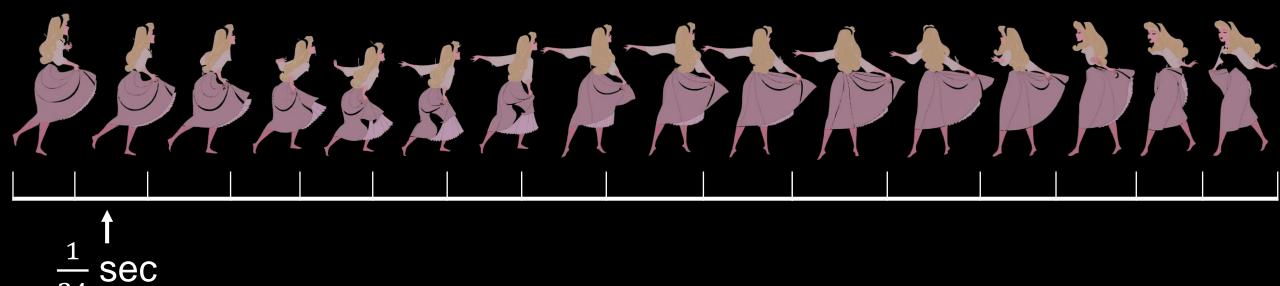




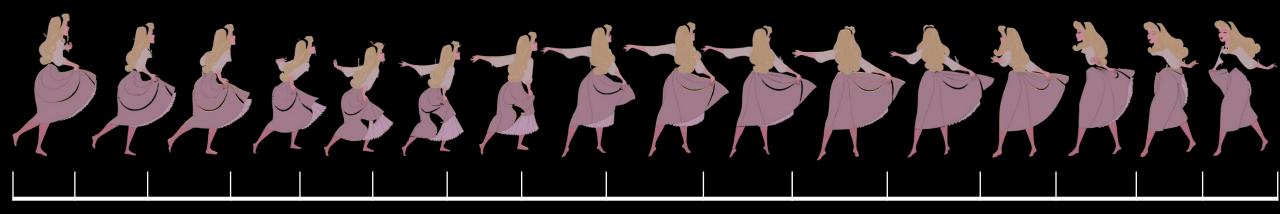
Deep Animation Video Interpolation in the Wild

Li Siyao*, Shiyu Zhao*, Weijiang Yu, Wenxiu Sun, Dimitris Metaxas, Chen Change Loy, Ziwei Liu SenseTime Research, Rutgers University, Sun Yat-sen University, Shanghai Al lab, Nanyang Technological University

24

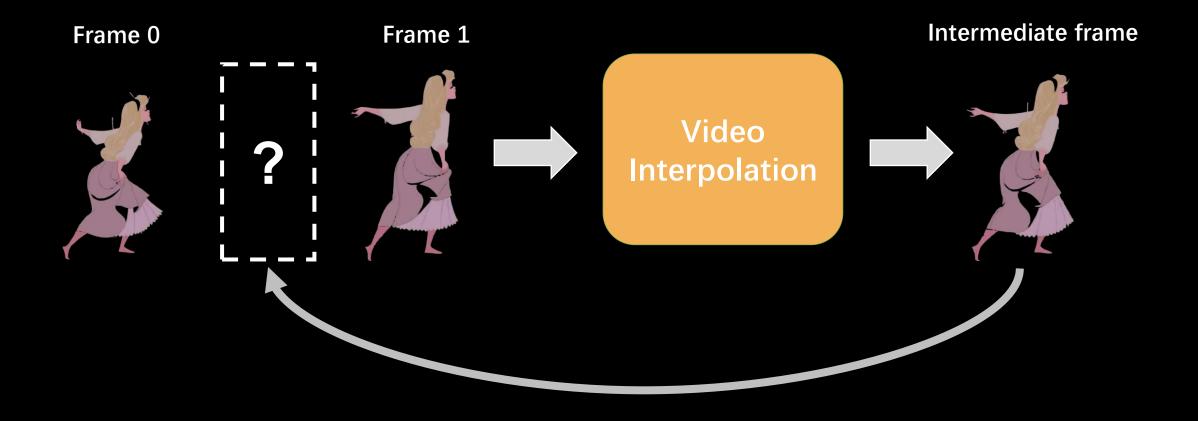


full frame rate 24 fps



"on twos" $24 \text{ fps} \rightarrow 12 \text{ fps}$ "on threes" $24 \text{ fps} \rightarrow 8 \text{ fps}$

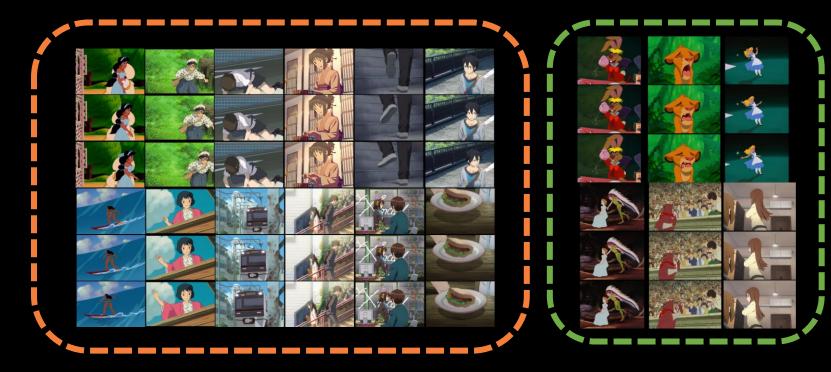
24 fps 8 fps



Problems

- 1. Existing methods do not perform well on animation
- 2. No animation dataset for training/testing of video interpolation

Animation Triplet Dataset (ATD-12K)



Rich Annotations:

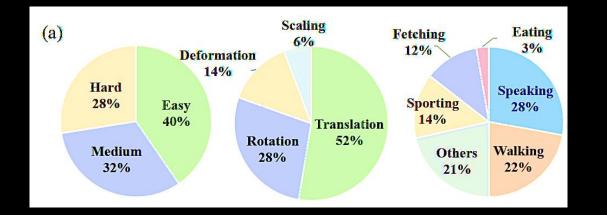
- Difficulty level
- Movement tags
- Salient Motion Region

Training set 10K

Test set 2K

Rich annotations

- Hardness level
- Motion type
- Movement categories
- ROI for salient movement



Difficulties on animation video interpolation

• Animations are made of color pieces and lack of texture

Motion between anime frames are non-linear and extremely large

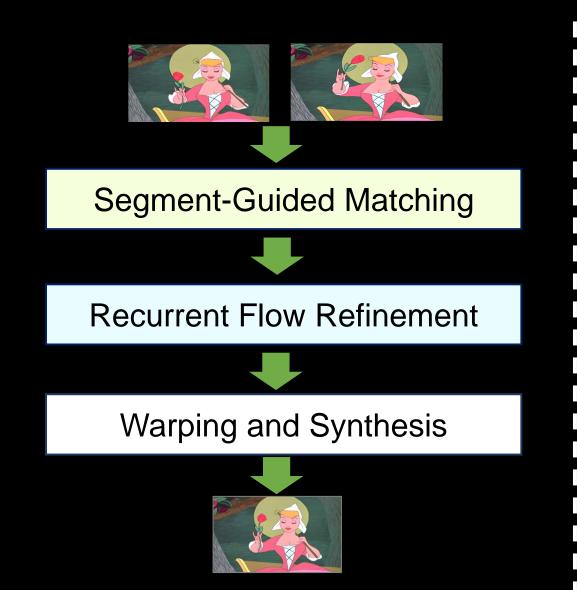
Segment-Guided Matching

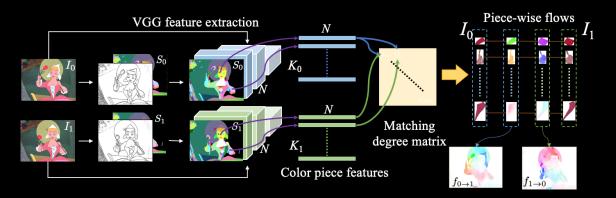
image

Contour

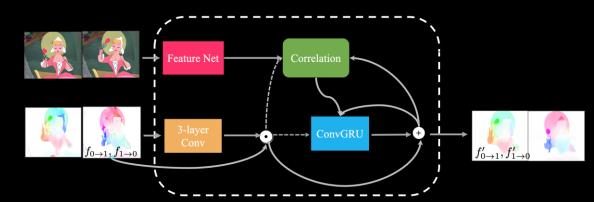
Segmentation

AnimeInterp





SGM computes coarse piece-wise flows



RFR refines pixel-wise flows

Experimental results

Table 1: Quantitative results on the test set of ATD-12K. The best and runner-up values are bold and underlined, respectively.

	Whole		RoI		Easy		Medium		Hard	
Method	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
Super SloMo w/o. ft.	27.88	0.946	24.56	0.886	30.66	0.966	27.29	0.948	24.63	0.917
Super SloMo [9]	28.19	0.949	24.83	0.892	30.86	0.967	27.63	0.950	25.02	0.922
DAIN w/o. ft.	28.84	0.953	25.43	0.897	31.40	0.970	28.38	0.955	25.77	0.927
DAIN [1]	29.19	0.956	25.78	0.902	31.67	0.971	28.74	0.957	26.22	0.932
QVI w/o. ft.	28.80	0.953	25.54	0.900	31.14	0.969	28.44	0.955	25.93	0.929
QVI [33]	29.04	0.955	25.65	0.901	31.46	0.970	28.63	0.956	26.11	0.931
AdaCoF w/o. ft.	28.10	0.947	24.72	0.886	31.09	0.968	27.43	0.948	24.65	0.916
AdaCoF [12]	28.29	0.951	24.89	0.894	31.10	0.969	27.63	0.951	25.10	0.925
SoftSplat w/o. ft.	29.15	0.955	25.75	0.904	31.50	<u>0.970</u>	28.75	0.956	26.29	0.934
SoftSplat [18]	29.34	0.957	25.95	0.907	31.60	0.970	28.96	<u>0.958</u>	26.59	<u>0.938</u>
Ours w/o. SGM	29.54	0.958	26.15	0.910	31.80	0.971	29.15	0.959	26.78	0.939
Ours w/o. RFR	27.62	0.944	24.43	0.887	29.78	0.959	27.29	0.946	24.94	0.920
Ours	29.68	0.958	26.27	0.910	31.86	0.971	29.26	0.959	27.07	0.939

x8 slower

original

Super SloMo

SoftSplat

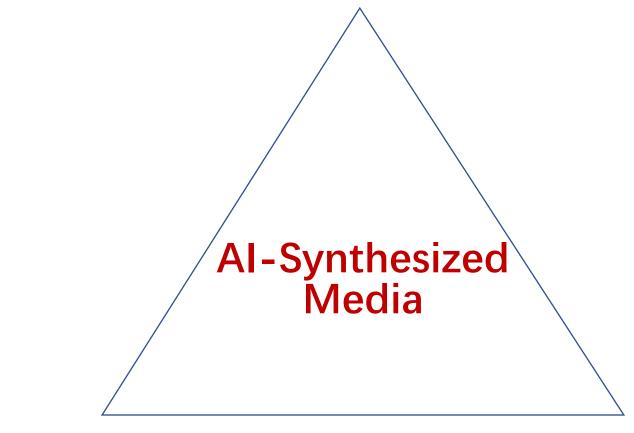
New task Study animation VI for the first time

New dataset

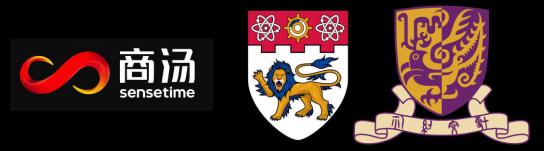
A large-scale dataset for training and test

New method

An animation-specific model making progress in this task



Re-enacted Creation



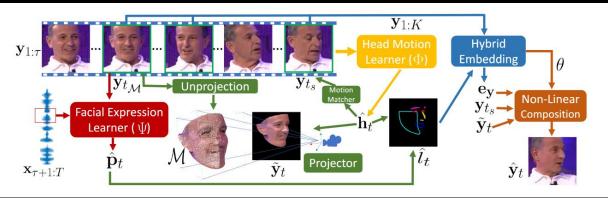
Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation

Hang Zhou,¹ Yasheng Sun,^{2, 4} Wayne Wu,^{3, 4} Chen Change Loy,³ Xiaogang Wang,¹ and Ziwei Liu³

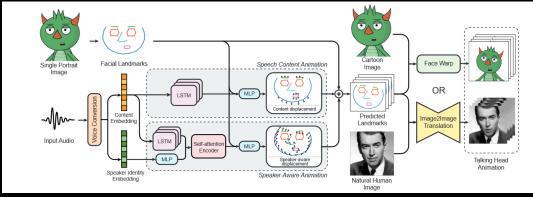
- 1. The Chinese University of Hong Kong
- 2. Tokyo Institute of Technology
- 3. Nanyang Technological University
- 4. SenseTime Research

Previous Methods

- Rely on intermediate representations (2D/3D landmarks, 3D face reconstruction). These representations are not accurate under extreme cases.
- Pure reconstruction-based methods by latent feature learning cannot change pose.
- No method has shown the results of free pose control with large views in this area.



Talking-head Generation with Rhythmic Head Motion. (ECCV 2020)



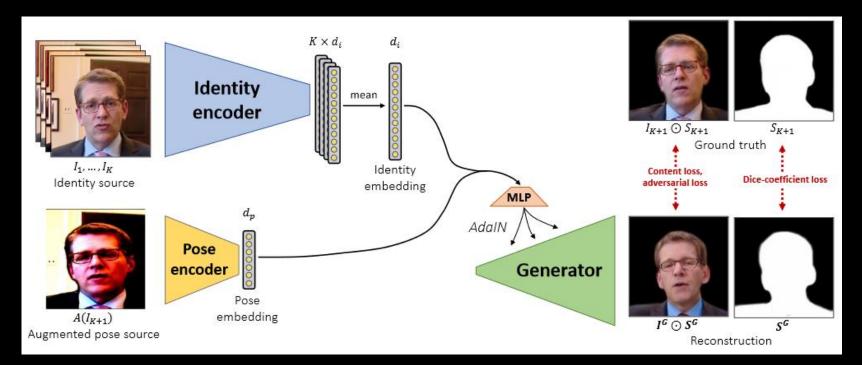
MakeItTalk: Speaker-Aware Talking-Head Animation (TOG 2020)

Core Ideas

- Without structural intermediate representation.
- Identify a non-identity space with data augmentation.
- Leverage contrastive audio-visual learning for lip sync.
- Devise an implicit pose code using 3D prior.
- Style-based generator for information balancing.

Inspiration: Face Reenactment

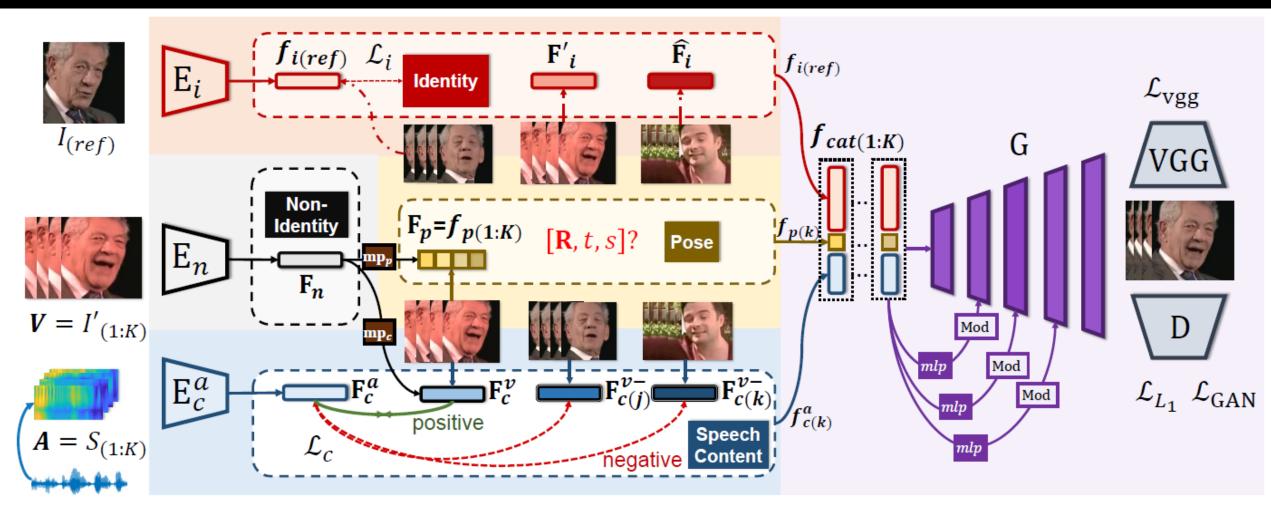
- Identity information can be repelled by frame augmentation.
- Style-based generator can automatically balance identity and identityirrelevant information.



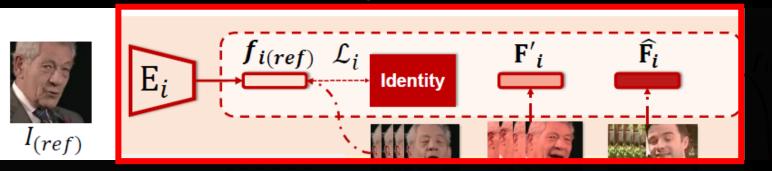
Neural head reenactment with latent pose descriptors. (CVPR 2020)

Pipeline: Pose-Controllable Audio-Visual System

• Modularize 3 spaces, including identity, speech content and pose.

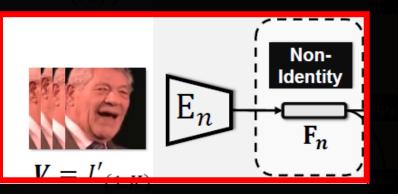


• Identity space encoding



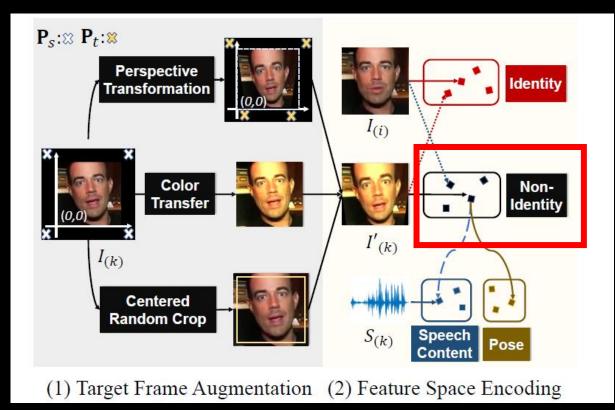
• Identity space can be easily encoded with ID supervision.

- Encode non-identity space.
 - The non-identity space is the base for the encoding of speech content and pose spaces.



Non-Identity Space Encoding

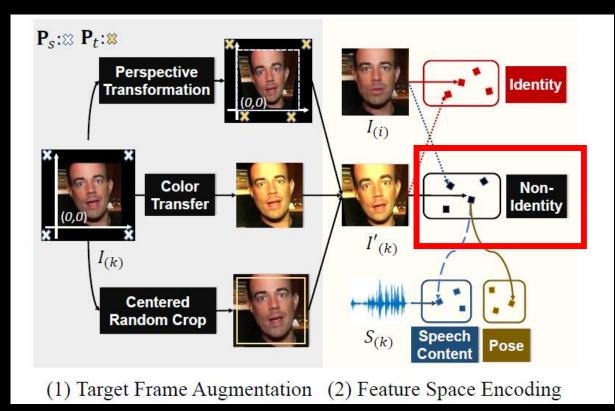
- Target Frame Augmentation.
 - Perspective transform for shape.
 - Color transfer for texture.
 - Centered crop for scale shift.



- Intuition: Source for Desired Information
 - Speech content and pose information should originate from this latent space.

Non-Identity Space Encoding

- Target Frame Augmentation.
 - Perspective transform for shape.
 - Color transfer for texture.
 - Centered crop for scale shift.



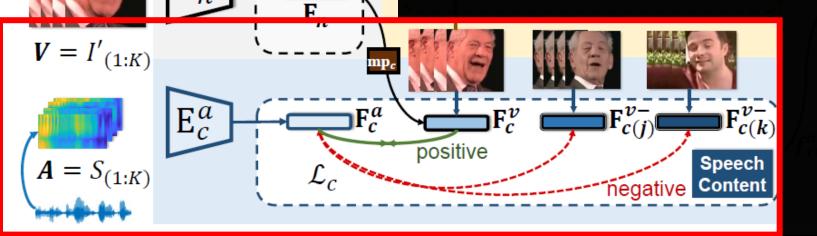
- Intuition: Source for Desired Information
 - Speech content and pose information should originate from this latent space.

• Speech content space

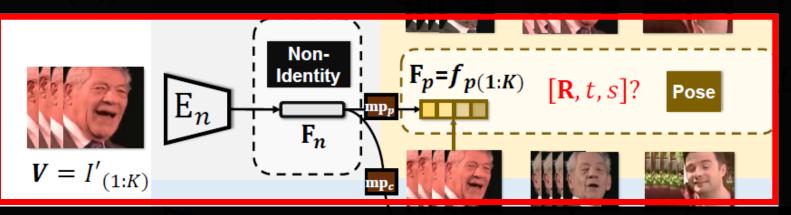
Non-

Identity

- The non-identity space is the base for the encoding of two spaces.
- The speech content space is encoded through contrastive learning with softmax contrastive loss.

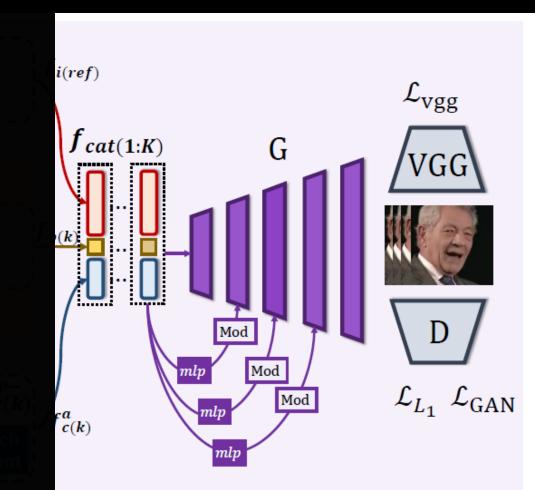


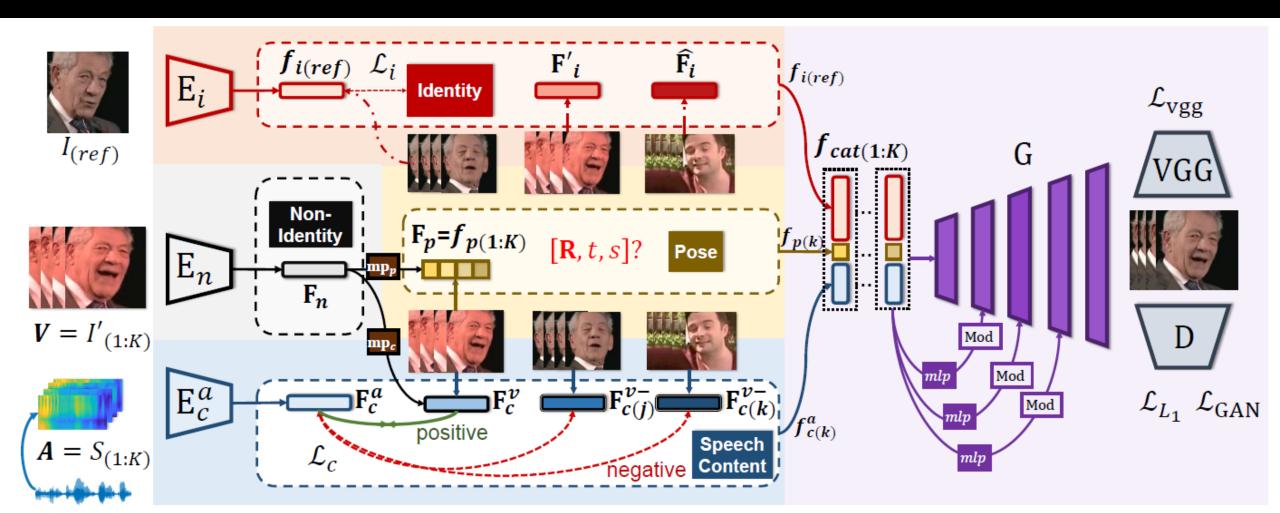
- Pose space encoding.
- The non-identity space is the base for the encoding of two spaces.



• The pose space is implicitly devised to a length of 12.

- Features from the three spaces are concatenated and sent to a StyleGAN2based generator.
- The reconstruction loss implicitly enforces the pose code to learn the desired information.





Evaluation

Table 1: The quantitative results on LRW [16] and VoxCeleb2 [15]. All methods are compared under the four metrics. For LMD the lower the better, and the higher the better for other metrics. [†]Note that we directly evaluate the authors' generated samples on VoxCeleb2 under their setting. They have not provided examples on LRW.

LRW [16]					VoxCeleb2 [15]			
Method	SSIM ↑	CPBD ↑	$LMD\downarrow$	$\mathrm{Sync}_{conf}\uparrow$	SSIM ↑	CPBD ↑	$LMD\downarrow$	$\mathrm{Sync}_{conf}\uparrow$
ATVG [10]	0.810	0.102	5.25	4.1	0.826	0.061	6.49	4.3
Wav2Lip [44]	0.862	0.152	5.73	6.9	0.846	0.078	12.26	4.5
MakeitTalk [75]	0.796	0.161	7.13	3.1	0.817	0.068	31.44	2.8
Rhythmic Head [†] [8]	-	-	-	-	0.779	0.802	14.76	3.8
Ground Truth	1.000	0.173	0.00	6.5	1.000	0.090	0.00	5.9
Ours-Fix Pose	0.815	0.180	6.14	6.3	0.820	0.084	7.68	5.8
PC-AVS (Ours)	0.861	0.185	3.93	6.4	0.886	0.083	6.88	5.9

- Structured similarity SSIM.
- Cumulative probability blur detection (CPBD).
- Landmarks Distance (LMD) around the mouths.
- Confidence score (Sync conf) proposed in SyncNet.

Comparison with Previous Methods

- ATVG (Chen et al. 2019) (2D Landmark-based)
- Wav2Lip (Prajwal et al. 2020) (Reconstruction-based)
- MakeitTalk (Zhou et al. 2020) (3D Landmark-based)
- Rhythmic Head (Chen et al. 2020) (3D model-based)
- Ours (Reconstruction-based) (Poses are retrieved from 50 random pose source videos in the test set)

Conclusion

- Synchronization between audio and visual information is the basic self-supervision and is beneficial for cross-modal synthesis.
- Pose and possibly other information can be implicitly disentangled through learning the speech content within audio-visual synchronization
- Style-based generator is capable of information balancing through reconstruction training.

Code and models: https://github.com/Hangz-nju-cuhk/Talking-Face_PC-AVS

AI-Synthesized Media

DeepFake Detection

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

Yinan He^{1,2*} Bei Gan^{1,3*} Siyu Chen^{1,3*} Yichun Zhou^{1,4*} Guojun Yin^{1,3} Luchuan Song ^{5†} Lu Sheng⁴ Jing Shao^{1,3‡} Ziwei Liu⁶

What is 3.45 pounds expressed in grams?

For more videos, check out: www.video chemistry textbook.com

3)OCDE



You

200

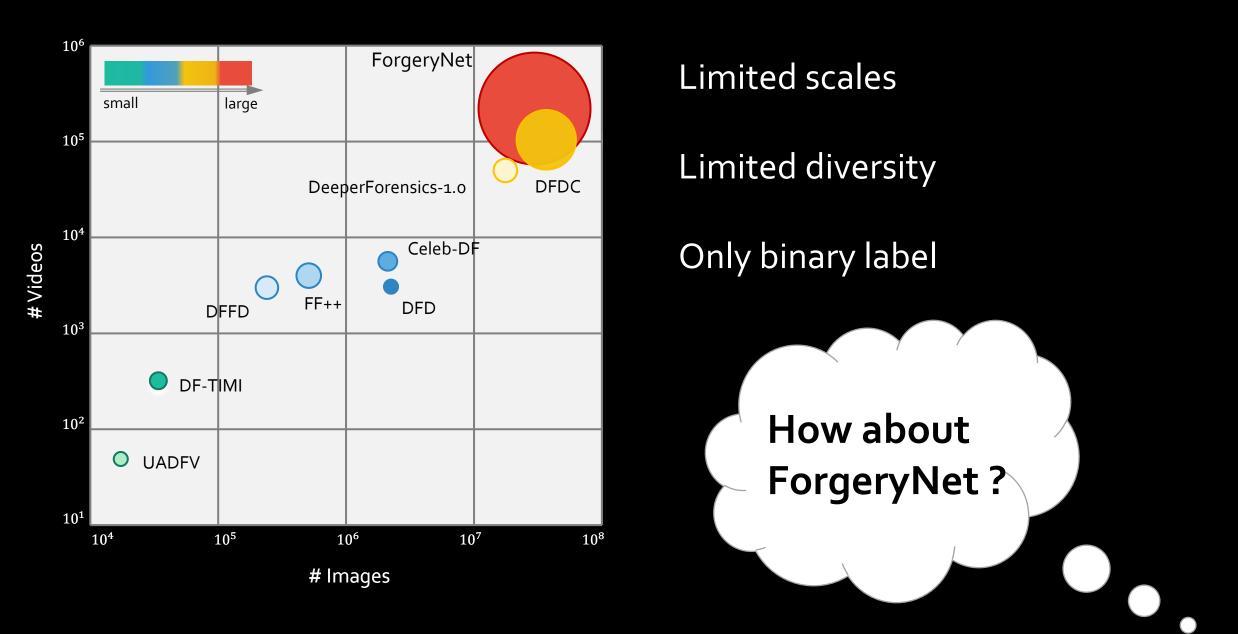
100000

3)OCDE

What is 3.45 pounds expressed in graws? pounds - grams

For more videos, check out: www.video chemistry textbook.com

Current Forgery Dataset



ForgeryNet: Wild Original Data

diversified dimensions

Angle

Expression

Identity

Lighting

Scenario

.

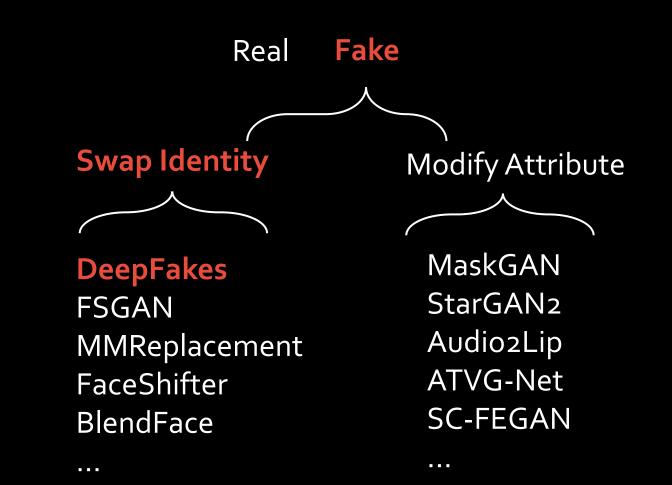
ForgeryNet: Various Forgery Approaches

15 approaches

variety of learning-based models

2.9M still images

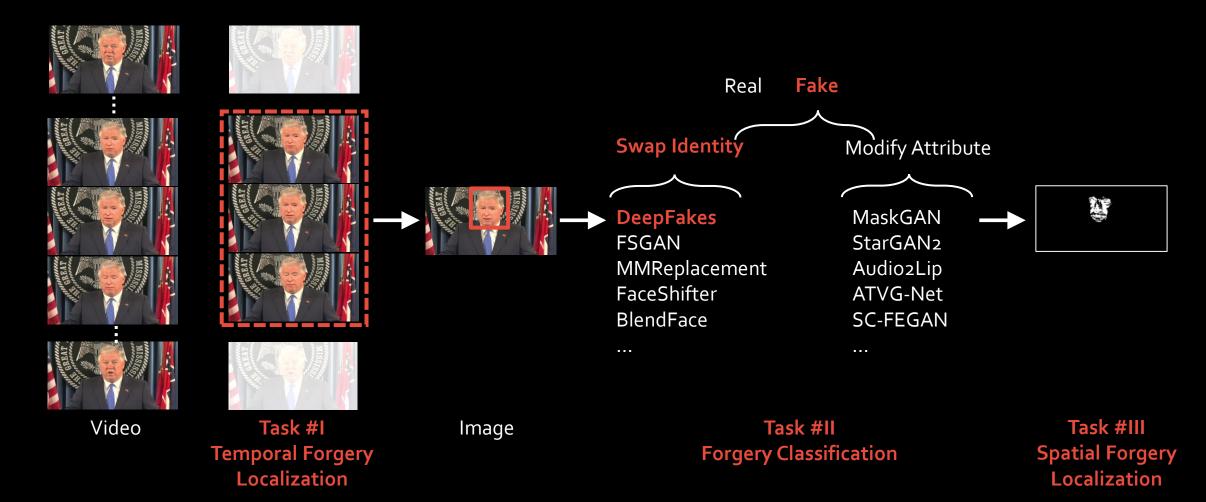
220k video clips



ForgeryNet: Diverse Re-rendering Process

more than 36 mix-perturbations

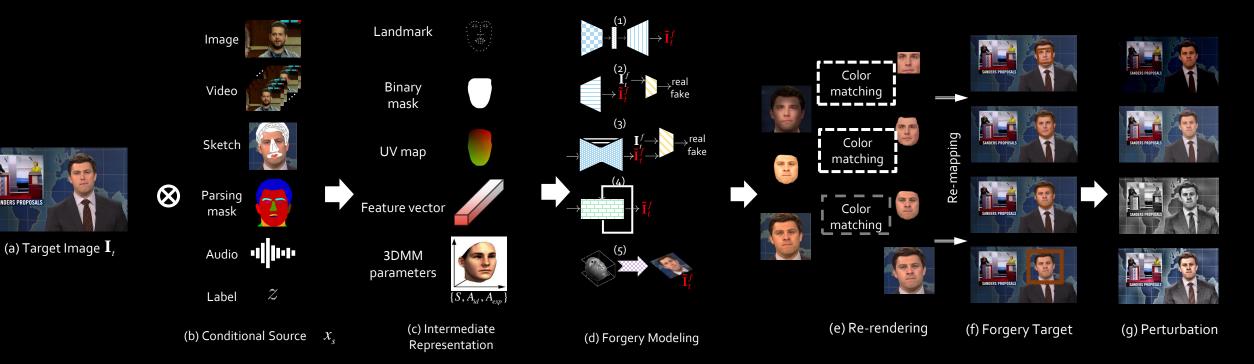
ForgeryNet: Comprehensive Annotations and Tasks



4 Tasks

9.4M annotations

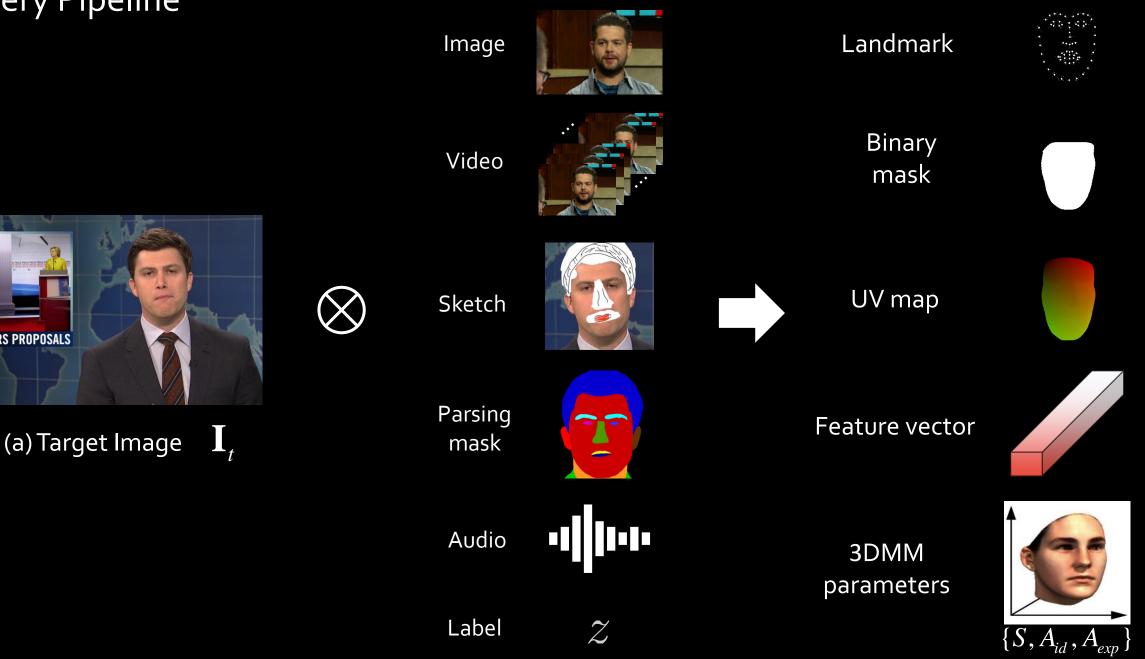
SANDERS PROPOSALS

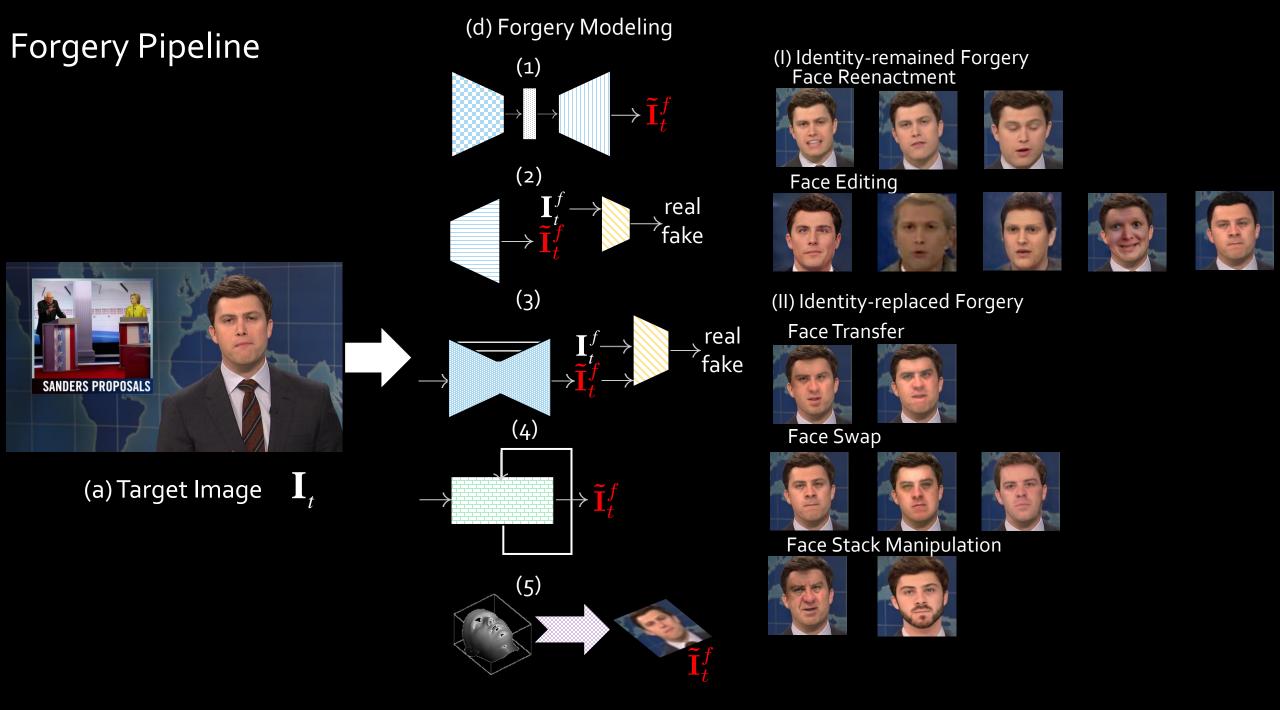


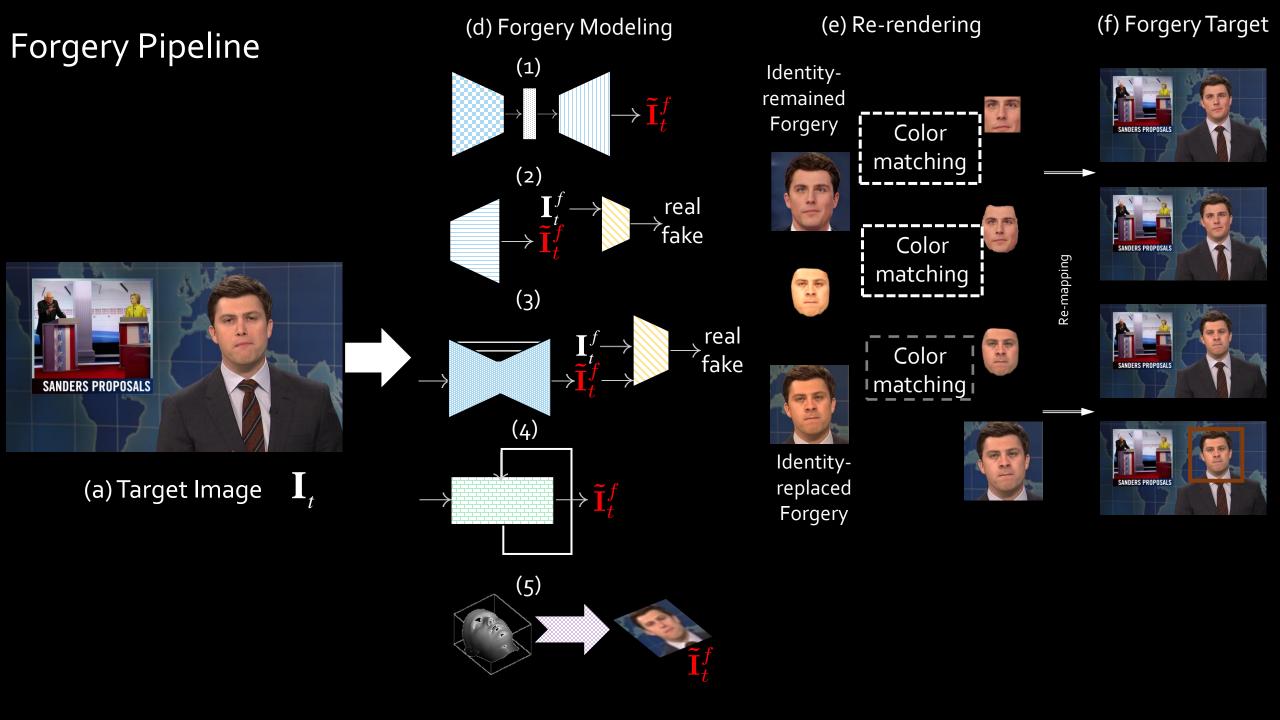
SANDERS PROPOSALS

(b) Conditional Source \mathcal{X}_{s}

(c) Intermediate Representation







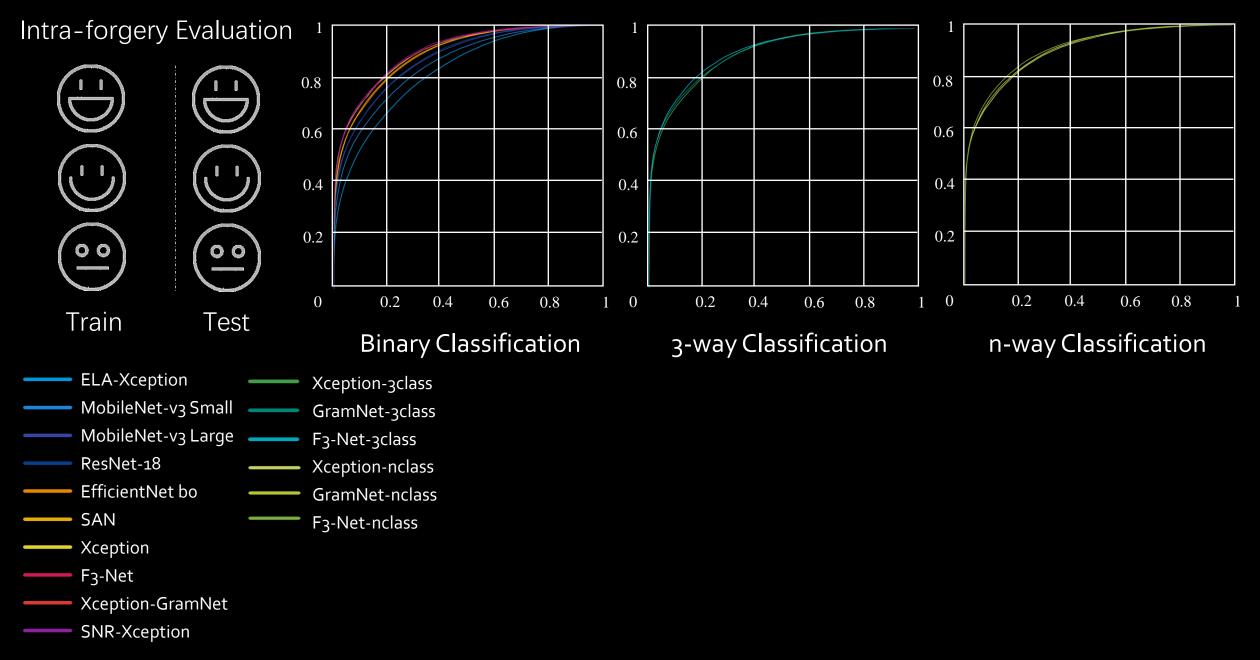
(f) Forgery Target($\tilde{\mathbf{I}}_{t}$)

SANDERS PROPOSALS SANDERS PROPOSAL RandomBrightness RandomGamma SANDERS PROPOSALS SANDERS PROPOSALS 36 perturbations JpegCompression CLAHE ChannelShuffle GlassBlur SANDERS PROPOSALS SANDERS PROPOSALS SANDERS PROPOSALS

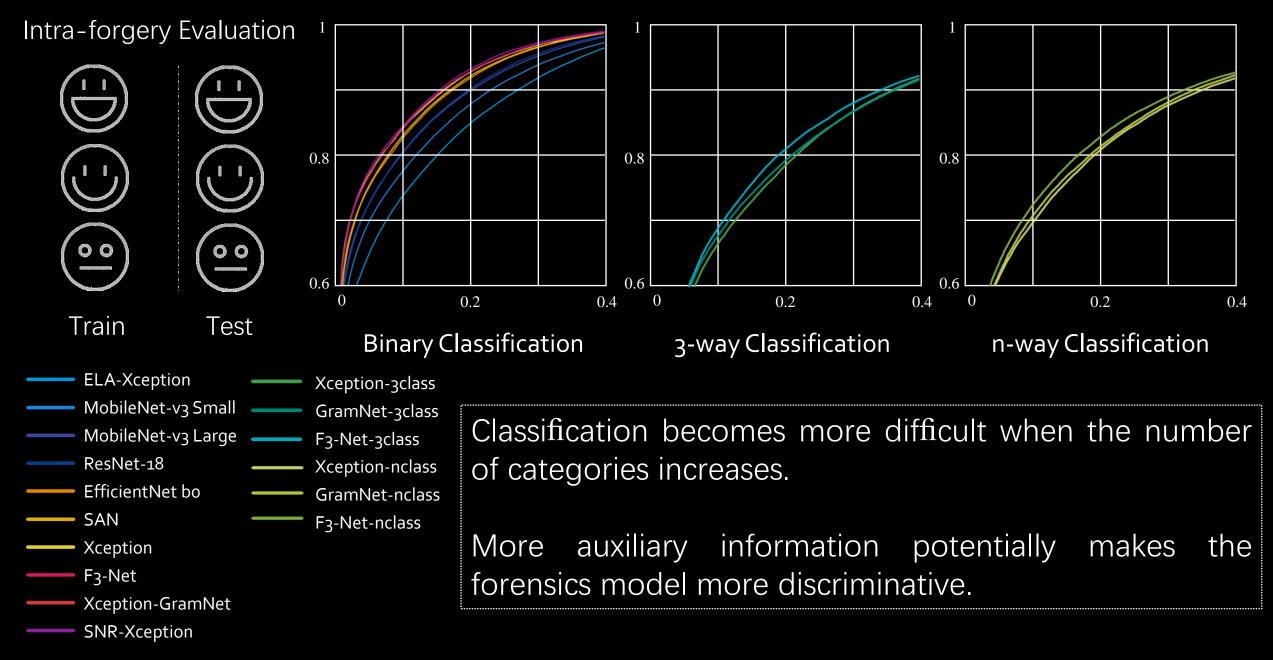
(g) Perturbation

4 Task Benchmark

Task I: Image Forgery Classification

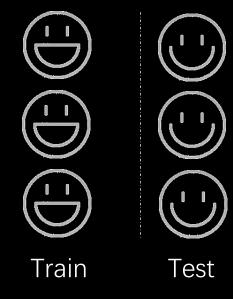


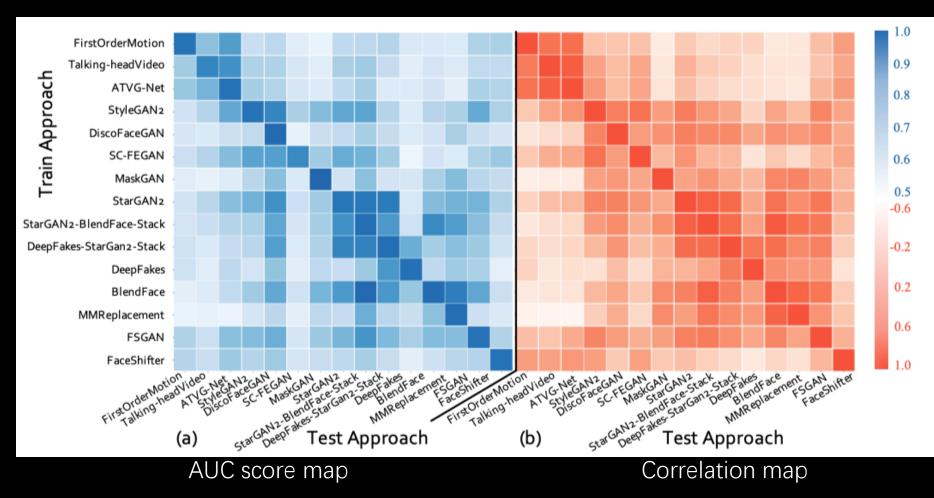
Task I: Image Forgery Classification



Task I: Image Forgery Classification

Cross-forgery Evaluation





Forgery approaches belonging to the same meta-category usually have higher correlations mutually. The generalization ability of forensics methods across forgery approaches.

Task II: Spatial Forgery Localization

Video

Ground-truth

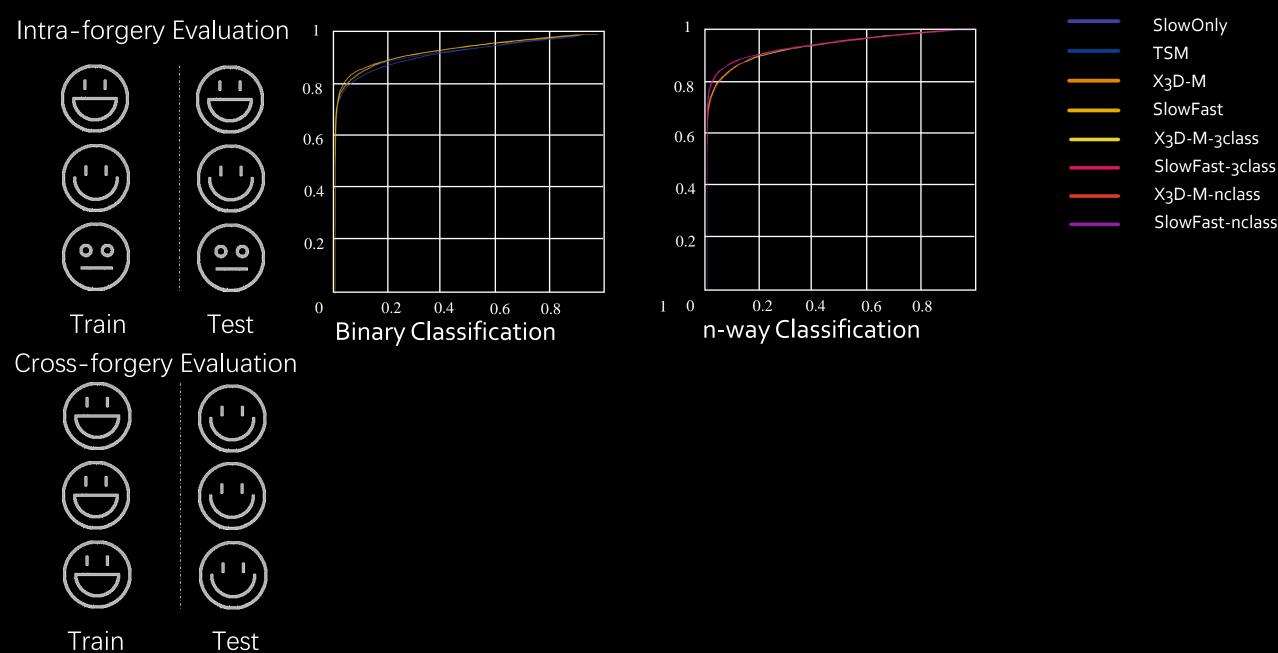
Predicted map

Images along with forgery masks are used to train the localization model aims to specify manipulated regions

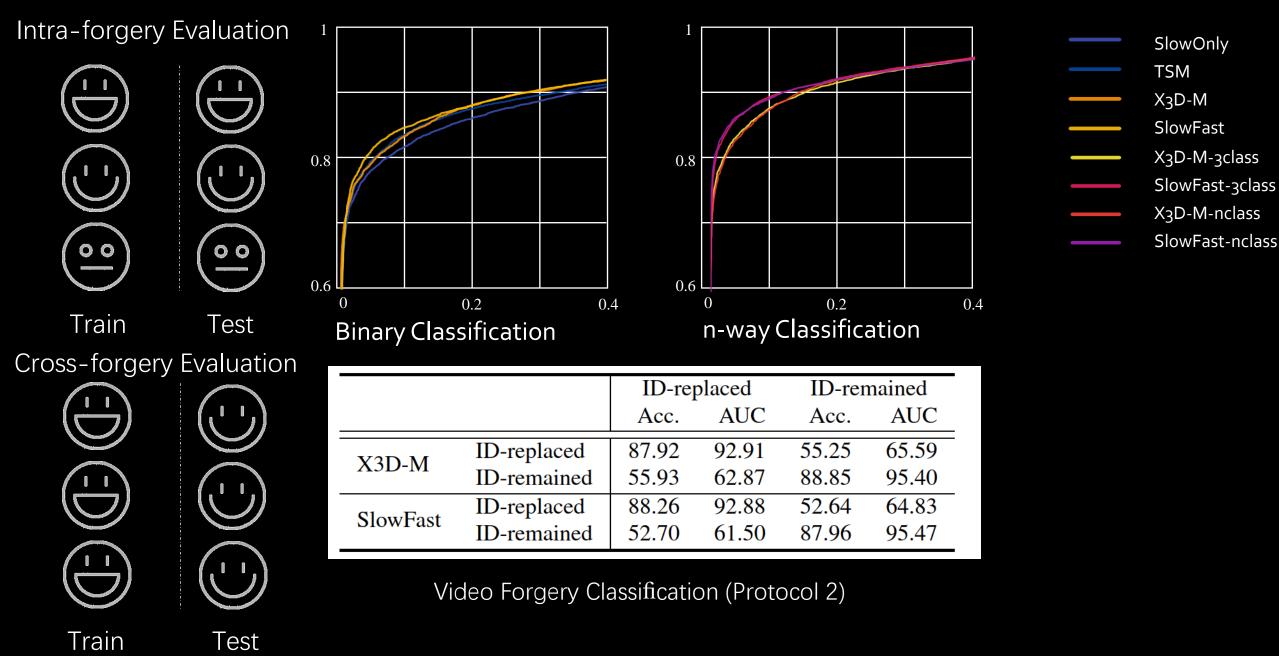
Method	IoU			Long		
	0.1	0.2	0.01	0.05	0.1	$Loss_{l1}$
Xception+Reg.	89.55	93.70	67.57	83.25	89.22	0.0131
Xeption+Unet [37]	95.99	98.76	79.71	92.70	97.13	0.0134
HRNet [42]	96.27	98.78	88.73	92.99	96.27	0.0114

results with IOU, IOUdiff and L1 distance.

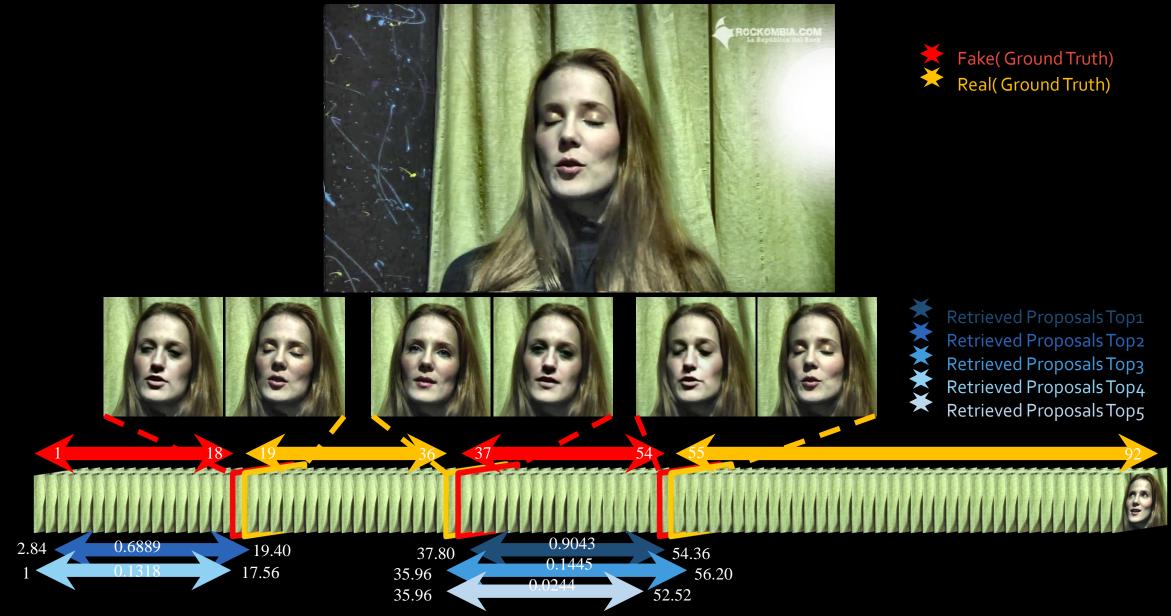
Task III: Video Forgery Classification



Task III: Video Forgery Classification



Task IV: Temporal Forgery Localization



provide temporal boundaries of forgery segments and the corresponding confidence values

Summary

- (1)Wild Original Data
- (2) Various Forgery Approaches
- (3) Diverse Re-rendering Process.
- (4)Comprehensive Annotations and Tasks.

Scan to download ForgeryNet

