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Deep Animation Video Interpolation in the Wild

Li Siyao*, Shiyu Zhao*, Weijiang Yu, Wenxiu Sun, Dimitris Metaxas, Chen Change Loy, Ziwei Liu

SenseTime Research, Rutgers University, Sun Yat-sen University, Shanghai AI lab, Nanyang Technological University
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“on twos”      24 fps → 12 fps

“on threes”    24 fps → 8  fps



24 fps 8 fps
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Video 

Interpolation

Frame 0 Frame 1 Intermediate frame



Problems

• 1. Existing methods do not perform well on animation

• 2. No animation dataset for training/testing of video interpolation

DAIN SoftSplatInput frames Super SloMo



Animation Triplet Dataset (ATD-12K)

Training set 10K Test set 2K 

Rich Annotations:

• Difficulty level

• Movement tags

• Salient Motion Region



Rich annotations

• Hardness level

• Motion type

• Movement categories

• ROI for salient movement

Hardness level Motion type Movement categories



Difficulties on animation video interpolation

• Animations are made of color pieces and lack of texture

• Motion between anime frames are non-linear and extremely large



Segment-Guided Matching

Contourimage Segmentation



AnimeInterp

Recurrent Flow Refinement

Segment-Guided Matching

Warping and Synthesis

RFR refines pixel-wise flows

SGM computes coarse piece-wise flows



Experimental results
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SoftSplat Ours



New task

New dataset

New method

A large-scale dataset for training and test

Study animation VI for the first time

An animation-specific model making progress in this task
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Pose-Controllable Talking Face Generation by 

Implicitly Modularized Audio-Visual Representation

Hang Zhou, Yasheng Sun,    Wayne Wu,   Chen Change Loy,   Xiaogang Wang,  and  Ziwei Liu
1                                       2, 4                                3, 4                                             3                                                1                                           3
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• Rely on intermediate representations (2D/3D landmarks, 3D face 

reconstruction). These representations are not accurate under extreme cases.

• Pure reconstruction-based methods by latent feature learning cannot change 

pose.

• No method has shown the results of free pose control with large views in this 

area.

Previous Methods

Talking-head Generation with Rhythmic 
Head Motion. (ECCV 2020)

MakeItTalk: Speaker-Aware Talking-Head Animation 
(TOG 2020)



• Without structural intermediate representation.

• Identify a non-identity space with data augmentation.

• Leverage contrastive audio-visual learning for lip sync.

• Devise an implicit pose code using 3D prior.

• Style-based generator for information balancing.

Core Ideas



• Identity information can be repelled by frame augmentation.

• Style-based generator can automatically balance identity and identity-

irrelevant information.

Neural head reenactment with latent pose descriptors. (CVPR 2020)

Inspiration: Face Reenactment



Pipeline: Pose-Controllable Audio-Visual System

• Modularize 3 spaces, including identity, speech content and pose.



Pipeline

• Identity space encoding.

• Identity space can be easily encoded with ID supervision.



Pipeline

• The non-identity space is the base for the encoding of 
speech content and pose spaces.

• Encode non-identity space. encoding.



• Target Frame Augmentation.

• Perspective transform for shape.

• Color transfer for texture.

• Centered crop for scale shift.

• Intuition: Source for Desired Information

• Speech content and pose information should originate from this latent space.

Non-Identity Space Encoding



• Target Frame Augmentation.

• Perspective transform for shape.

• Color transfer for texture.

• Centered crop for scale shift.

• Intuition: Source for Desired Information

• Speech content and pose information should originate from this latent space.

Non-Identity Space Encoding



Pipeline

• The non-identity space is the base for the encoding of 
two spaces.

• The speech content space is encoded through 
contrastive learning with softmax contrastive loss.

• Speech content space encoding.



Pipeline

• The non-identity space is the base for the encoding of 
two spaces.

• The pose space is implicitly devised to a length of 12.

• Pose space encoding.• Pose space encoding.



Pipeline

• Features from the three spaces are 
concatenated and sent to a StyleGAN2-
based generator.

• The reconstruction loss implicitly enforces 
the pose code to learn the desired 
information.



Pipeline



• Structured similarity SSIM.

• Cumulative probability blur detection (CPBD).

• Landmarks Distance (LMD) around the mouths.

• Confidence score (Sync conf) proposed in SyncNet.

Evaluation





• Synchronization between audio and visual information is the basic 

self-supervision and is beneficial for cross-modal synthesis.

• Pose and possibly other information can be implicitly disentangled 

through learning the speech content within audio-visual 

synchronization

• Style-based generator is capable of information balancing through 

reconstruction training.

Conclusion

Code and models: https://github.com/Hangz-nju-cuhk/Talking-Face_PC-AVS

https://github.com/Hangz-nju-cuhk/Talking-Face_PC-AVS
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ForgeryNet: A Versatile Benchmark for 
Comprehensive Forgery Analysis

Yinan He1,2*      Bei Gan1,3∗ Siyu Chen1,3∗ Yichun Zhou1,4∗

GuojunYin1,3 Luchuan Song 5†     Lu Sheng4  Jing Shao1,3‡    Ziwei Liu6



• Real or Fake？
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How about 
ForgeryNet ?



ForgeryNet: Wild Original Data  

diversified dimensions

Angle

Expression 

Identity

Lighting

Scenario

……



ForgeryNet: Various Forgery Approaches

Real Fake

Swap Identity Modify Attribute

DeepFakes
FSGAN
MMReplacement
FaceShifter
BlendFace
…

MaskGAN
StarGAN2
Audio2Lip
ATVG-Net
SC-FEGAN
…

15 approaches

variety of learning-based models

2.9M still images

220k video clips



…

ForgeryNet: Diverse Re-rendering Process

…

…
…

…
…

…
…

more than 36 mix-perturbations



Real Fake

Swap Identity Modify Attribute

DeepFakes
FSGAN
MMReplacement
FaceShifter
BlendFace
…

MaskGAN
StarGAN2
Audio2Lip
ATVG-Net
SC-FEGAN
…

Task #II
Forgery Classification

ImageVideo Task #I
Temporal Forgery

Localization

…
…

Task #III
Spatial Forgery

Localization

…
…

ForgeryNet: Comprehensive Annotations and Tasks

4 Tasks 

9.4M annotations



Forgery Pipeline
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(a) Target Image
tI

Forgery Pipeline
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(d) Forgery Modeling
(I) Identity-remained Forgery

Face Reenactment

Face Editing

(II) Identity-replaced Forgery

Face Transfer

Face Swap

Face Stack Manipulation
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(f) Forgery Target(   )  tI

RandomBrightness

JpegCompression

GlassBlur
ToGray

ChannelShuffle

CLAHE

RandomGamma

(g) Perturbation

36
perturbations

Forgery Pipeline
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I: Image Forgery Classification

Intra-forgery Evaluation
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Intra-forgery Evaluation

Train           Test
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Classification becomes more difficult when the number
of categories increases.

More auxiliary information potentially makes the
forensics model more discriminative.

I: Image Forgery ClassificationTask



Cross-forgery Evaluation

Train           Test

AUC score map Correlation map

Forgery approaches belonging to the same meta-category usually have higher correlations mutually.

The generalization ability of forensics methods across forgery approaches.

I: Image Forgery ClassificationTask



Task II: Spatial Forgery Localization

Video Ground-truth Predicted map

results with IOU, IOUdiff and L1 distance.

Images along with forgery masks are
used to train the localization model

aims to specify manipulated regions



Task III: Video Forgery Classification

Intra-forgery Evaluation
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Task III: Video Forgery Classification

Binary Classification n-way Classification
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Task IV: Temporal Forgery Localization
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provide temporal boundaries of forgery segments and the corresponding confidence values



• Photo Wall



Summary

(1)Wild Original Data

(2) Various Forgery Approaches

(3)Diverse Re-rendering Process.

(4)Comprehensive Annotations and Tasks.

Scan to download ForgeryNet
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