Al-Driven Visual Content Generation

Ziwei Liu 刘子纬 Nanyang Technological University

S-LAB FOR ADVANCED INTELLIGENCE

MMLab@NTU

ABOUT MMLab@NTU

MMLab@NTU was formed on the 1 August 2018, with a research focus on computer vision and deep learning. Its sister lab is MMLab@CUHK. It is now a group with three faculty members and more than 40 members including research fellows, research assistants, and PhD students.

Members in MMLab@NTU conduct research primarily in low-level vision, image and video understanding, creative content creation, 3D scene understanding and reconstruction. Have a look at the overview of our research. All publications are listed here.

We are always looking for motivated PhD students, postdocs, research assistants who have the same interests like us. Check out the careers page and follow us on Twitter.

Al-Generated Content (AIGC)

Movie

Game

Anime

VTuber

C

Script-剧本创作 Sculpting 雕刻 Topology . 拓扑 Animals 生物形象设定 Layout Desig 镜头预演 World-views Scenery 布景 世界观 scene 场景设定 Make Up 化妆 Filming Shoot 拍摄镜头 Props 道具

Virtual Beings

2D Generation

Motion Generation

3D Generation

"brown wooden dock on lake surrounded by green trees during daytime"

Scene Generation

INTRODUCTION

Human full-body images •

- Pose Transfer •
- Virtual try-on •

Source image/Target p

Our results

FRAMEWORK OF TEXT2HUMAN

© 2022 SIGGRAPH. ALL RIGHTS RESERVED.

FRAMEWORK OF TEXT2HUMAN

FRAMEWORK OF TEXT2HUMAN

INTERACTIVE USER INTERFACE

DEEPFASHION-MULTIMODAL DATASET

DEEPFASHION-MULTIMODAL DATASET

- 44,096 high-resolution human images, including 12,701 full body human images
- manually annotated the human parsing labels
- DensePose for each human image
- manually annotated the keypoints
- manually annotated with attributes
- textual description

EXPERIMENT

MORE SYNTHESIZED HUMAN IMAGES

SUMMARY

Task

Controllable Human Image Generation

Method

Text2Human

SUMMARY

Dataset DeepFashion-Multimodal

TEXT-DRIVEN IMAGE GENERATION

DALL·E^[1]

Imagen ^[3]

[1] https://openai.com/blog/dall-e/[3] https://imagen.research.google

[2] https://openai.com/dall-e-2/

TEXT-DRIVEN 3D GENERATION

CLIP + DIFFERENTIABLE RENDERING

Dream Field ^[1]

Text2Mesh^[2]

WHAT ABOUT TEXT-DRIVEN AVATAR GENERATION => NOW WE HAVE <u>AVATARCLIP</u>

TEXT-DRIVEN 3D GENERATION CLIP + DIFFERENTIABLE RENDERING

a) Differentiable Rendering

b) Optimization guided by CLIP

AVATARCLIP: HOW IT WORKS

A) STATIC AVATAR GENERATION

Shape Description: "a tall and fat man"

Appearance Description: "Iron Man"

B) MOTION GENERATION

Motion Description: "running"

AVATARCLIP: DETAILED PIPELINE

AVATARCLIP: TO THE IMPLICIT SPACE

Implicit Function

AVATARCLIP: SHAPE SCULPTING AND TEXTURE GENERATION

Examples of Intermediate Results
AVATARCLIP: OPTIMIZATION PROCESS

A) RANDOM BACKGROUND SEGMENTATION

1) Black 2) White

B) SEMANTIC-AWARE PROMPT AUGMENTATION

AVATARCLIP: DETAILED PIPELINE

AVATARCLIP: CANDIDATE POSES GENERATION

A) POSE VAE (VPOSER)

B) CLIP-GUIDED CANDIDATE POSES QUERY

OVERALL RESULTS

Create Your Own Avatar with Natural Languages!

Renderer Controller

Vertex Color

*

- □ Wireframe
- Normal

60 FPS (1-60)

CONTROLLING & CONCEPT MIXING ABILITIES

© 2022 SIGGRAPH. ALL RIGHTS RESERVED.

QUANTITATIVE RESULTS: USER STUDY

A) STATIC AVATAR GENERATION

3D Animation

Video Games

Films

VTuber

Motion Collection

- Expensive
- **Time-consuming**
- Not User-friendly

- Cheap
- Efficient
- **User-friendly**

Text-driven Motion Generation

Classical Motion Generative Model

Discriminator

MoGlow^[3] (Normalization Flow)

INR^[4] (Implicit Function)

DB

Issues: 1) Hard to model complicated motion sequence 2) Lack of diversity

[1] Petrovich M, et al. Temos: Generating diverse human motions from textual descriptions. ECCV 2022 [2] Sigal R, et al. MoDi: Unconditional Motion Synthesis from Diverse Data. ArXiv 2022

[3] Henter GE, et al. Moglow: Probabilistic and controllable motion synthesis using normalising flows. TOG 2020

[4] Cervantes P, et al. Implicit neural representations for variable length human motion generation. ECCV 2022

Motion Generation with Diffusion Model

Framework

Challenge:

- 1. Variable length
- 2. Fusing timestep
- 3. Improve efficiency

Cross-Modality Linear Transformer

Linear Self-Attention

Classical Self-Attention

Linear Self-Attention

d) Tying the shoe, standing up and then walking forward

Examples

a person spins quickly and takes off running. #29

MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model

This is an interactive demo for MotionDiffuse. For more information, feel free to visit our project page(https://mingyuan-zhang.github.io/projects/MotionDiffuse.html).

Text-driven Content Generation

DALL-E^[2]

DreamFusion^[3]

Imagen^[1]

[1] <u>https://imagen.research.google/</u>
[2] <u>https://openai.com/dall-e-2/</u>
[3] <u>https://dreamfusion3d.github.io/</u>

What about creating the environment?

The surrounding environment is also important to an immersive VR experience.

•

Full field of view (360°) → Panorama
Realistic illuminations → HDR
High-quality textures → 4K resolution

Create the Surroundings Using Texts

Text2Light An Overview

Text2Light Stage I: Text-driven LDR Panorama Generation

Text2Light Stage I: Structure-aware Local Sampler

Spherical Positional Encoding (SPE)

Text2Light Stage II: Super-Resolution Inverse Tonemapping

Text2Light Stage II: SR-iTMO as two MLPs

Super-Resolution Inversed Tone Mapping Operator (SR-iTMO)

Text2Light Applications: UI

Own Your Reality with Any Sentences

Describe Your Scene

e.g. a living room

"white bed linen with white pillow"

"brown wooden floor with white wall"

"closeup photo of concrete stair surrounded by white painted wall"

"blue and brown wooden counter"

"empty parking lot during daytime"

"gray concrete pathway with wall signages"

"brown wooden floor with white wall"

"closeup photo of concrete stair surrounded by white painted wall"

"blue and brown wooden counter"

"empty parking lot during daytime"

"lined brown pew benches"

"photo of

orange chairs"

"Avenue, Trees, Path, Sunbeams, Sunrays"

"ocean waves crashing on shore under blue and white cloudy sky during daytime"

"road with falling leaves in between of trees"

"lined brown pew benches"

"Avenue, Trees, Path, Sunbeams, Sunrays"

"ocean waves crashing on shore under blue and white cloudy sky during daytime"

"photo of

Project Page

https://frozenburning.github.io/projects/text2light/

HuMMan MoCap System

Search by Action

Search by Actor

MMHuman3D Software

2D Generation

Thank you!

NYANG CHNOLOGICAL IVERSITY

IGAPORE

S-LAB

INTELLIGENCE

3D Generation

"brown wooden dock on lake surrounded by green trees during daytime"

Scene Generation

Motion Generation