

## Building Open-World Multi-Modal AI Assistant



Ziwei Liu

Nanyang Technological University







## AI Assistant with Scene Graph



### 2D Image

### 2D Video

### 3D video

[ECCV'22] Panoptic Scene Graph

[CVPR'23] Panoptic Video Scene Graph

[NeurIPS'23] 4D Panoptic Scene Graph





### Q: What is in the image?

## Q: What happened in the image?



### Q: What is in the image? A: <u>2 x person, 2 x bench,</u> tree, and pavement

Q: What happened in the image?





Q: What is in the image? A: <u>2 x person, 2 x bench,</u> tree, and pavement

Q: What happened in the image?



## Q: What happened in the image?



A woman and a man touching and looking at each other. The woman is sitting on **the bench on the left**, and the man is sitting on the **right bench**. They are in front of **many trees**.

## •.Q: What happened in the image?







Using scene graph:

Q: What happened in the image? Q: Where is the man sitting on?

Add some commonsense: Q: What are the man and the woman doing? Q: What is the relation between the man and the woman?



## PSG: Panoptic Scene Graph





### Input:

An image with complex scene

## Output:

A scene graph with panoptic segments

J Yang, et al. Panoptic Scene Graph Generation, ECCV 2022

## • PSG: Panoptic Scene Graph

+ Accurate Grounding + Proper Class Granularity + Able to involve Background



## PSG Dataset

- 49K images
- 133 object classes (80 objects and 53 stuff)
- COCO + VG
- 56 predicate classes.
- Careful Predicate Design and Annotate



#### Type or Select Reasonable S-V-O to View Examples

| SUBJECT  | VERB                | OBJECT     |        |
|----------|---------------------|------------|--------|
| person ~ | playing with $\sim$ | dog $\vee$ | Search |

Examples: person-driving-car, person-any-airplane, etc.

Instruction

In this webpage, we provide 2k PSG examples to help users better understand our dataset.
 Users can select reasonable "subject – predicate – object" combinations to view image samples.

We provide an "any" option, so you can enter in "person – eating – any" to see all the eaters.
Click the buttons left to the pictures to highlight the segmentation pairs of the triplet.

http://psgdataset.org/explore.html

J Yang, et al. Panoptic Scene Graph Generation, ECCV 2022

### Two Stage Methods



(a) Stage-1: Segment Feature Extractor

(b) Stage-2: Scene Graph Prediction

- + Fast, Simple, Easy to use + Support Classic Methods
- Heavily Rely on Detectors

### **One Stage Method (PSGTR)**



- + Focus on Vision
- + Direct Training
- Need Long Time to Learn
- Conflict with PanSeg

### **One Stage Method (PSGFormer)**



- + Explicit Relation Model
- + Fun Query Matching
- + Quick Converge
- Larger model

## PSG: Panoptic Scene Graph





Prediction Result from the PSG Model

## Q: Who is wearing a fancy bag in the photo?



Q: Where is the man with fancy bag standing?





#### PANOPTIC VIDEO SCENE GRAPH

## **PSG + Video = PVSG**



### **PVSG - Panoptic Video Scene Graph Generation**





adult. 1

## • PVSG Dataset

### A long-video, multiple perspectives, dense annotated, long-term dependent VidSGG dataset



400 videos, 9 hours 77s long in average 3rd + egocentric 150K Panoptic Seg. Dynamic Scene Graph Dense Captioning Commonsense QA



## PVSG Dataset



#### **Video Description**

The scene depicts the boy receiving, giving, and unwrapping gifts on the holiday.

#### **Dense Description**

0000-0018: The little boy (child-1) passed through the television (tv-1) to pick up a gift (gift-1).

**0018-0045:** The **little boy (child-1)** handed the **gift (gift-1)** to a **woman (adult-1)**, who appears to be **his mother (adult-1)**.

#### **Dense QA**

At Frame 0035: Q: Why did the little boy (child-1) give the gift (gift-1) to the woman (adult-1)? A: It might be a gift exchange moment, and the gift is for the woman (adult-1).

## PVSG Dataset (Egocentric)



#### EpicKitchen (55 videos)

Ego4D (56 videos)

Towards Comprehensive Egocentric Video Scene Understanding









(a) Stage-1: For Feature Tube and Mask Tube Output

(b) Stage 2: Relation Prediction



adult-1 guiding child-1

tree O belu adult 1 chilla ( ilbe 1 ground @ adult-5 walking on ground-0 shild-1 riding bike-1 adult-1 looking at child-1 adult-1 holding child-1 adult-1 running on ground-0 adult-2 looking at child-1 child-1 walking on ground-0 adult-1 talking to child-1





## PSG + Video + 3D = PSG4D



## •PSG4D: AI Assistant in 4D world







(a) **PSG4D-GTA** (Synthetic, Third-Person View)

Source: Grand Theft Auto V 67 videos (avg. 84s) 28K RGB-D images 35 object classes, 43 relations



Source: HOI-4D 2973 videos (avg. 20s), Egocentric 891K RGB-D images 46 object classes, 15 relations

(b) PSG4D-HOI (Real-World, Egocentric)

## •PSG4D Pipeline



## •PSG4D Real-World Application



## Al Assistant with SG





### 2D Image

### 2D Video

### 3D video

[ECCV'22] Panoptic Scene Graph

[CVPR'23] Panoptic Video Scene Graph

[NeurIPS'23] 4D Panoptic Scene Graph

Multimodal input -> Scene Graph -> LLM Prompts





# The pathway: From Language Models to Language Assistant



Open-source

BERT













Zero-shot learning Zero-shot learning In-context learning Zero-shot learning In-context learning Instruct following Zero-shot learning In-context learning Instruct following Human alignment




### Flamingo: a Visual Language Model for Few-Shot Learning



Alayrac et. al. Flamingo: a visual language model for few-shot learning. 2022

### Flamingo - Multi-modal Accistants

OpenFlamingo simply completes the next reasonable sentence.

he danger of this sport?

**OpenFlamingo\*:** What is the danger of playing baseball? What is the danger of this sport? What might be the danger of this sports?

Flaming (trained in the SSL manner) are not aligned with user intent and serve as a Chatbot.

\*OpenFlamingo is the open-source version of Flamingo, enabling community research with a strong interleaved data pretrained model

### Flamingo ≠ Multi-modal Assistants



**Question:** What is the danger of this sport?

Human Expected: The sport involves players running and trying to catch the ball while others are standing in the grass, which can lead to collisions or accidents.

Flaming (trained in the SSL manner) are not aligned with user intent and serve as a Chatbot.

# MMC4: Image-text interleaved data for OpenFlamingo Pretraining

[..., "Check out Shane Driscoll's take on sustainable communities and how his photograph fits this year's

Green Cities theme.", ...,



,"Man-made platforms like the one pictured here allow these fish-eating

birds of prey to thrive in developed coastal areas.", "A city surrounded by mountains.", "I took this photo

in October on a hike in New Hampshire.",



, "It is looking at Mt. Chicora from the middle sister

mountain.", "Getting people out into beautiful places like this is becoming more and more popular, and each

time we bring a little piece of nature back with us that inspires us to make our cities better.", ...]

Diverse and large-scale, but lack of Instruct-following scenario

Zhu et. al. Multimodal C4: An open, billion-scale corpus of images interleaved with text. 2023

### From interleaved data pretraining to multimodal In-context instruction tuning



(interleaved pretraining)

**OpenFlamingo** 

(Multi-Modal In-Context Instruction Tuning)

 From interleaved data pretraining to multimodal In-context instruction tuning

- Otter enhances OpenFlamingo's capabilities, including:
  - Instruction following: aligning with user intent
  - Stronger in-context learning ability.
  - Fine-grained understanding: spot the difference between images.
  - Vision reasoning and even planning: It can write story for a series of images and even suggestion how to clean your room from your room tour video.

### Otter: A Multi-Modal In-context Instruction Tuned Model



## MIMIC-IT Dataset



S-LAB FOR ADVANCED INTELLIGENCE



## MIMIC-IT Dataset



S-LAB FOR ADVANCED INTELLIGENCE

| Dataset        | Visual Data (Scenes)   | In-context | Video | #Clips/Images | <b>#Unique Instruction.</b> | #Instances | Lang.   |
|----------------|------------------------|------------|-------|---------------|-----------------------------|------------|---------|
| MiniGPT-4 [54] | CC (General)           | -/-        | ×     | - / 134M      | 4                           | 5K         | English |
| LLaVA [28]     | COCO (General) [27]    | lang./-    | ×     | - / 81K       | 261K                        | 345K       | English |
|                | COCO (General) [27]    | lang./vis. | ×     | - / 81K       | 261K                        | 345K       |         |
|                | SD (Surveillance) [21] | lang./vis. | ×     | - / 9K        | 10K                         | 15K        |         |
|                | SN (Indoor Ego.) [15]  | lang./vis. | ×     | - / 0.5K      | 4.8K                        | 6K         |         |
| MIMIC-IT       | DC (General)[22]       | lang./vis. | 1     | 16K / 1M      | 40K                         | 62K        | Multi   |
| WIIWIIC-III    | VIST (Story)[20]       | lang./vis. | 1     | - / 16K       | 32K                         | 33K        | wiulu.  |
|                | TVC (TV)[24]           | lang./vis. | 1     | 86K / 577K    | 86K                         | 92K        |         |
|                | E4D (General Ego.)[19] | lang./vis. | 1     | 400K / 6.4M   | 1.8M                        | 2.4M       |         |
|                | Total                  | lang./vis. | 1     | 502K / 8.1M   | 2.2M                        | 2.8M       | -       |



#### 2.8M Instructions

Our dataset has 2.8M multimodal instructionresponse pairs, with 2.2M unique instruc- tions derived from images and videos. Each pair is accompanied by multi-modal in-context information, forming conversational contexts aimed at empowering VLMs in perception, reasoning, and planning.



#### Multi-Modal In-context

Discover the first multi-modal in-context instruction dataset, a integrated compilation that seamlessly blends videos and images, spanning a diverse array of scenes.

### Aa

#### **Multi-Lingual**

Featuring 8 languages: English, Chinese, Korean, Japanese, German, French, Spanish, and Arabic, thereby allowing a larger global audience to altoghther enjoy from the convenience brought about by advancements in artificial intelligence.

### Otter's Capacities Preview



<u>Otter</u>: Yes, I do think it is cool that the man is playing video games while wearing a headmounted display.

### Otter's Benchmark Performance

### MMBench

- Category
  - Perception (1860 Questions)
  - Reasoning (1114 Questions)
- Example Question
- Eval Method
  - Multiple-Choice with GPT-4 as Judge.
  - Circular Evaluation
- Otter's Performance (Test set)
  - 48.3 55.9 %
- Analysis
  - Formatting is important.
  - Padding with in-context examples to enable model's better formatting.

Image scene



Q: What type of environment is depicted in the picture? A. Home shopping mall B.



Q: What type of environment is depicted in the picture? A. Home B.

GT: C

shopping mall C. Street D. forest





Q: Which mood does this image convey? A. Cozy B. Anxious С. Нарру D. Angry GT: C

Street

С.



Q: Which mood does this image convey? A Sad B. Anxious С. Нарру D. Angry GT: A



Liu, Yuan, et al. "MMBench: Is Your Multi-modal Model an All-around Player?." arXiv preprint arXiv:2307.06281 (2023).

| ( | Method           | Parameters | Language Model | Vision Model       | Overall 🌲 | LR 🌲 | AR \$ | RR 🌲 | FP-S 🌲 | FP-C 🌲 | СР \$ |
|---|------------------|------------|----------------|--------------------|-----------|------|-------|------|--------|--------|-------|
|   | JiuTian          | 12.3B      | FLANT5-XXL     | EVA-G              | 61.8      | 39.8 | 76.5  | 56.8 | 62.0   | 51.2   | 68.7  |
| • | mPLUG-Owl        | 7.2B       | LLaMA 7B       | CLIP ViT-L/14      | 61.6      | 36.4 | 75.8  | 62.0 | 64.8   | 49.2   | 66.2  |
|   | LMEye            | 4.4B       | Flan-XL        | CLIP ViT-L/14      | 61.3      | 36.9 | 73.0  | 55.4 | 60.0   | 58.0   | 68.9  |
|   | Shikra           | 7.2B       | Vicuna 7B      | CLIP ViT-L/14      | 60.2      | 33.5 | 69.6  | 53.1 | 61.8   | 50.4   | 71.7  |
|   | Otter-I          | 9B         | LLaMA 7B       | CLIP ViT-L/14      | 48.3      | 22.2 | 63.3  | 39.4 | 46.8   | 36.4   | 60.6  |
|   | G2PT             | 7B         | LLaMA 7B       | ViT-G              | 39.8      | 14.8 | 46.7  | 31.5 | 41.8   | 34.4   | 49.8  |
|   | LLaMA-Adapter-v2 | 7.2B       | LLaMA 7B       | CLIP ViT-L/14      | 38.9      | 7.4  | 45.3  | 19.2 | 45.0   | 32.0   | 54.0  |
|   | LLaVA            | 7.2B       | LLaMA 7B       | CLIP ViT-L/14      | 36.2      | 15.9 | 53.6  | 28.6 | 41.8   | 20.0   | 40.4  |
|   | InstructBLIP     | 8B         | Vicuna 7B      | EVA-G              | 33.9      | 21.6 | 47.4  | 22.5 | 33.0   | 24.4   | 41.1  |
|   | VisualGLM        | 8B         | ChatGLM 6B     | EVA-CLIP           | 33.5      | 11.4 | 48.8  | 27.7 | 35.8   | 17.6   | 41.5  |
|   | PandaGPT         | 14B        | Vicuna 13B     | ImageBind ViT-H/14 | 30.6      | 15.3 | 41.5  | 22.0 | 20.3   | 20.4   | 47.9  |
|   | MiniGPT-4        | 8B         | Vicuna 7B      | EVA-G              | 23.0      | 13.6 | 32.9  | 8.9  | 28.8   | 11.2   | 28.3  |
|   | MMGPT            | 9B         | LLaMA 7B       | CLIP ViT-L/14      | 16.0      | 1.1  | 23.8  | 20.7 | 18.3   | 5.2    | 18.3  |
|   | OpenFlamingo v2  | 9B         | MPT 7B         | CLIP ViT-L/14      | 5.7       | 11.4 | 12.8  | 1.4  | 5.5    | 0.8    | 4.0   |
|   | OpenFlamingo     | 9B         | LLaMA 7B       | CLIP ViT-L/14      | 4.3       | 9.1  | 11.4  | 3.3  | 2.5    | 1.6    | 1.5   |



### OTTER-HD A High-Res Multimodality Model

#### **Perception & Recognition Demonstrations**



#### Query Prompt:

What's inside this painting?

#### Model Response:

The image depicts a detailed, traditional East Asian scene, possibly of Chinese origin. A large, intricately designed building with multiple tiers and a sloping roof stands prominently in the leftcenter. The architecture, with its wooden beams, intricate carvings, and elevated structure, is reminiscent of ancient Chinese temples or palaces.

Query Prompt:

How many camels are inside this image?

Model Response:

It is hard to examine the camels in such intricate image. However, I find there are three camels visible in the image.

Figure 1: Perception and recognition demonstration of OtterHD-8B. The image is a traditional Chinese painting from the Song Dynasty, *Along the River During the Qingming Festival*. This is a part of the entire artwork, with a resolution of  $2466 \times 1766$ .

- Multimodal model fine-tuned from Fuyu
- Fine-grained interpretation of high-resolution visual input
- Eliminates the need for a vision encoder
- Supports flexible input sizes at test time
- Adaptable to diverse inference budgets

Table 1: Performance comparison of OtterHD-8B with prominent open-sourced LMMs, detailing instruction/response data pairs, training, and evaluation resolutions. The term *Dynamic* refers to training with varied resolutions as elaborated in Sec. 4.2. The term *Original* indicates evaluations using each image's resolution without any resizing operation, whereas other models undergo evaluations with images resized to a consistent square resolution at denoted in Eval Res. Details on metrics are provided in Sec. 4.1.

| Models                              | I/D Daire  | Train Dec   | Evol Dos  | MagBench |      | MME <sup>1</sup> |               | DODE        | MM-V        | MMP  | M.Victo    |
|-------------------------------------|------------|-------------|-----------|----------|------|------------------|---------------|-------------|-------------|------|------------|
| widdeis                             |            | ITalli Kes. | Eval Kes. | Multi.   | FF.  | Cog.             | Percep.       | FOL         |             |      | IVI- VISta |
| Idefics-9B <sub>instruct</sub> [24] | 1M         | 224         | 224       | 20.8     | 13.4 | 187.9            | 1165.0        | 74.6        | 23.7        | 45.5 | 19.8       |
| Otter-9B [25]                       | 150K       | 224         | 224       | 25.7     | 15.8 | 306.4            | 1292.3        | 72.5        | 24.7        | 48.3 | 19.7       |
| InstructBLIP-7B [13]                | 1.2M       | 224         | 224       | 5.6      | 15.2 | -                | -             | -           | 26.2        | 36.0 |            |
| InstructBLIP-13B [13]               | 1.2M       | 224         | 224       | 3.8      | 16.3 | 291.8            | 1212.8        | 78.9        | 25.6        | 33.9 | 25.3       |
| LLaVA-7B <sub>1.5</sub> [30]        | $3.6M^{2}$ | 336         | 336       | 26.8     | 24.7 | -                | 1510.7        | 85.9        | 30.5        | 59.5 | -          |
| Qwen-VL-7B <sub>chat</sub> [4]      | 1.4B       | 448         | 448       | 14.5     | 15.9 | 360.7            | 1487.5        | -           |             | 61.8 | -          |
| Fuyu-8B [5]                         | -          | -           | Original  | 29.3     | 15.2 | 237.5            | 728.6         | 74.1        | 21.4        | 10.7 | 20.6       |
|                                     |            | 512         | 512       | 33.5     | 31.4 | 289.8            | <u>1359.3</u> | 86.1        | 25.1        | 58.5 | 22.3       |
| OtterHD-8B                          | 370K       | 1024        | 1024      | 37.8     | 37.2 | 288.5            | 1313.7        | 81.5        | 19.8        | 53.6 | 17.3       |
|                                     |            | Dynamic     | Original  | 42.7     | 39.9 | 331.4            | 1223.4        | <u>86.0</u> | <u>26.3</u> | 58.3 | 23.5       |





- Improved with FlashAttention-2 and other fused operators
  - Fused layernorm
  - Fused square ReLU
  - Fused rotary positional embedding
- Optimizing Fuyu-8B's HuggingFace implementation



## **MagnifierBench**

Small Object Localization Small Object Counting Q: Where is the laptop? Q: How many training cones are on the grass? A. On the green sofa A. 3 B. On the square dining table B. 4 C. On the grey round stool C. 5 D. On the brown round table D. 6 Correct Answer: C

GPT-4V Answer: A

Correct Answer: C GPT-4V Answer: A



Q: What color is the lid of the small bottle closest to the green lid of the seasoning jar? A. Green,

B. Yellow,

- C. White,
- D. Purple

Correct Answer: D GPT-4V Answer: C



#### Detailed OCR

#### Query Prompt:

What are all the scene text in the image?



#### Model Response:

OtterHD-8B: The scene text in the image is "3,642,039,031,0055. It seems to be an image of numbers, which seems to be a combination of numbers, letters, and symbols.

#### Scene Text + Knowledge + Reasoning

Query Prompt: What dish is it? Which Chinese city does it come from?



#### Model Response:

Fuyu-8B: 面,中国\*
LLaVA-1.5-13B:The dish is a bowl of noodles
with vegetables, possibly a beef noodle
dish, served in a brown bowl. It is a
popular Chinese dish, and it comes from the
city of Chongqing.

OtterHD-8B: The dish displayed in the image is called "热干面", which is translated as "Hot dry noodles". This is a traditional breakfast dish from Wuhan, the capital city of Hubei province in Central China...

Figure 6: Desktop understanding abilities comparison between LMMs. Incorrect parts are noted.

#### Desktop Understanding

#### Query Prompt:

Which website I am in?

#### cker News new | past | comments | ask | show | jobs | submit

- A ChatGPT cut off date now April 2023 (openal.com) 25 points by orien 18 minutes app 1 hide | 9 comments
- 2. A Jina AI launches open-source 8k text embedding (jina.ai)
- 3. 4 Running the "Reflections on Trusting Trust" Compiler (swtch.com)
- 4. A How to find a lost phone in a no-cell-coverage camping site? (manas.tech) 182 control by macrisbia 8 hours and 1 kide 122 comments
- 5. A ILeakage: Browser-Based Timerless Speculative Execution Attacks on Apple Devices (Ileakage.com) 447 parts by wei621197 13 hours and [ Nde ] 179 comments
- A Show HN: Instant API Build type-safe web APIs with JavaScript (althub.com/ 24 points by leithwhor 2 hours ago | Nide | 12 comments
- 7. A Making TV Useful For My 94-yr-old Aunt (techenhancedife.o 24 points by stacktruit 3 hours ago | hite | 3 comments
- 8. # Ask HN: PG's 'Do Things That Don't Scale' manual examples?
- 9. 4 Samsung announces 'Shinebolt' HBM3E memory (anandtech.co
- 24 points by mainty 4 hours ago | here | 4 comments 10. # Keyboard Maestro 11 (stainways.com) 104 points to Davidati 10 bits | 41 montesto

Model Response:
Fuyu-8B: "HBR3E" memory (manas.tech)

LLaVA-1.5-13B:You are in a website called
"Hacker News."

OtterHD-8B: According to the information provided, you are located in chapter "Hacker News View | comments'



### Stronger LLMs Supercharge Multimodal Capabilities in the Wild

- We expand current LLaVA-NeXT to 3x model size, up to 72B and 110B model.
- We found that, under the same training strategy, stronger LLM naturally brings stronger multimodal performance.

#### Benchmark Results

| I                  | Results with | LMMs-Eval   |           |        | LLaVA-NeXT (2024-05 Release) |                 |           |  |  |  |
|--------------------|--------------|-------------|-----------|--------|------------------------------|-----------------|-----------|--|--|--|
| Datasets           | Split        | Metric      | Instances | GPT4-V | Qwen1.5-<br>110B             | Qwen1.5-<br>72B | LLaMA3-8B |  |  |  |
| AI2D*              | test         | Acc.        | 3088      | 78.2   | 80.4                         | 77.4            | 71.6      |  |  |  |
| ChartQA*           | test         | RelaxedAcc. | 2500      | 78.5   | 79.7                         | 77.0            | 69.5      |  |  |  |
| DocVQA*            | val          | ANLS        | 5349      | -      | 85.7                         | 84.4            | 78.2      |  |  |  |
| MathVista          | test         | Acc.        | 1000      | 49.9   | 49.0                         | 46.6            | 37.5      |  |  |  |
| MMBench            | dev          | Acc.        | 4377      | 75.0   | 80.5                         | 80.5            | 72.1      |  |  |  |
| MME-<br>Cognition  | test         | Total Score | 2374      | 517.1  | 453.9                        | 459.6           | 367.8     |  |  |  |
| MME-<br>Perception | test         |             | 2074      | 1409.4 | 1746.5                       | 1699.3          | 1603.7    |  |  |  |
| MMMU               | val          | Acc.        | 900       | 56.8   | 50.1                         | 49.9            | 41.7      |  |  |  |
| RealWorldQA        | test         | Acc.        | 765       | 61.4   | 63.1                         | 65.4            | 60.0      |  |  |  |
| LLaVA-W**          | test         | GPT4-Eval   | 60        | 98.0   | 90.4                         | 89.2            | 80.1      |  |  |  |
| LLaVA-             | Small        | GPT4V-Eval  | 120       | 71.5   | 70.5                         | 71.2            | 62.5      |  |  |  |
| (Wilder)           | Medium       | GPT4V-Eval  | 1020      | 78.5   | 72.5                         | 73.4            | 63.1      |  |  |  |

\*Train split observed during SFT stage.

- LLaVA-NeXT reaches to GPT4-V level multimodal performance.
- Our largest model, LLaVA-NeXT-110B model only trained on 128-H800 for 18 hours.

#### Daily-life: Prompt Interpretation (the images in the right are generated via DALLE-3)



**LLaVA-NeXT-110B:** This character exudes a youthful and vibrant energy, with a radiant complexion that suggests a youthful age. The eyes are a striking shade of blue, full of life and curiosity. The hair is a lush green, cascading in soft waves that hint at a playful and spirited personality. The skin is smooth and fair, reflecting a healthy and energetic lifestyle. The expression is one of determination and confidence, with a slight hint of mischief in the eyes. The clothes are a mix of dark and light tones, with a gold and green color scheme that suggests a regal or mystical status. The character is adorned with intricate jewelry and accessories, adding to the overall impression of someone of high importance or magical ability.



**Qwen-VL-Max:** This is a portrait of a young woman with vibrant green hair and matching eyes. Her skin is fair, and she has a serious expression on her face. She is dressed in a white and black outfit, adorned with a green gemstone necklace.



**User Instruction:** write an image prompt for this character without details about the surrounding. Include color and details about all of these variables: age, eyes, hair, skin, expression, clothes **GPT4-V:** Create an image of a young adult female character with striking features. She should appear to be in her early twenties. Her eyes are a captivating amber hue, with a sharp gaze that conveys a sense of determination and curiosity. Her hair is a lush, vibrant green with soft waves cascading around her shoulders, giving her an otherworldly charm.\n\nHer skin is fair with a smooth, porcelain-like quality, and her expression is confident yet approachable, with a subtle hint of a smile playing on her lips. She is adorned in unique attire that includes a white top with a plunging neckline, accented with emerald green and gold jewelry that complements her hair. The jewelry is bold and fantastical, featuring large, ornate earrings shaped like stars and a prominent, jewel-encrusted brooch at her collar.



Intern-VL-1.5: image prompt:title: \"the enigmatic maiden\"description: a

digital illustration of a young woman with striking features. her age appears to be in her late teens to early twenties. she has vibrant green eyes that seem to hold a hint of mystery, and her skin is fair with a soft, natural glow, her hair is a rich, emerald green, styled in loose, wavy curls that cascade around her face and shoulders. she has a serene vet intense expression, with her lips slightly parted as if she is about to speak or is lost in thought.she is adorned in a fantasy-inspired outfit that combines elements of elegance and combat readiness. the top is a white, flowing garment with a plunging neckline, revealing a hint of her d\u00e9colletage. over this, she wears a black leather corset that accentuates her waist and adds a touch of edginess to her appearance. the corset is embellished with gold accents and a large, green gemstone at the center, which matches the color of her hair and the green holly-like pendant she wears around her neck.her accessories include large, gold earrings with a star-like design that complement her overall look. in her right hand, she holds a sword with a golden hilt and a green gemstone embedded in the pommel, suggesting that she is a warrior or a guardian of some sort. the sword's design is intricate, with gold and green accents that echo the colors found in her hair, eyes, and jewelry.the background is blurred, drawing focus to the character, but it appears to be a natural setting with hints of sunlight filtering through, possibly a forest or a garden, which adds to the mystical and otherworldly atmosphere of the image.



#### LLaVA-Wilder Qualitative Example



**User Instruction:** 请针对于这幅画写一首中文 古诗。

**GPT4V:** 好的,这幅画中的水獭看起来非常有趣和可爱,我尝试写一首中文古诗来描述它们:

湖光倒影水中映, 双獭共读故纸情。 萍水相逢最是缘, 浮生若梦伴诗行。

这首诗试图捕捉画面中水獭共享阅读的温馨场 景,以及它们在自然环境中的和谐生活。希望 您喜欢这首诗!

#### LLaVA-NeXT-110B:

好的,下面是我创作的中文古诗: 《两河獭,共读书》 水波荡漾,字字珠玑。 河清海晏,岁月静好, 读书河獭,传颂千古。

#### LLaVA-NeXT-72B:

两海獭水中读, 手捧书卷乐融融。 水波荡漾映日光, 知识海洋任遨游。

**Qwen-VL-Max:**两只水獭在水中戏笑,手中拿着一本书。 它们似乎在协商,眼神专注而认真。 水波荡漾着它们的影子,伴随它们自在。

这是一幅多么美妙的画面,让人感到无比的温馨和 平静。

Intern-VL-1.5: 好的,下面是我创作的中文古诗: 水边双影坐, 书卷共读时。 风起涟漪动, 心静意自怡。



| Chatbot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                                                          |                                                                                                              |                      |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|--|--|--|
| Home                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | About StartHere Logi<br>gTitle #1<br>ext here<br>ext here<br>Ext here<br>Text here<br>Text here<br>Text here<br>Text here<br>Text here            |                                                                                                          |                                                                                                              |                      |  |  |  |  |  |  |  |  |  |
| Here's a design<br>The image you've pro-<br>Here," and "Login," a<br>To create a website b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n for blogging website. Provide th<br>ovided is a hand-drawn sketch of<br>s well as three blog post sections<br>pased on this design, you would t | a website layout, which includes<br>s with titles and text content.<br>ypically use HTML for the structu | rebsite using HTML, CSS and Jav<br>s a navigation bar with links to "H<br>ure, CSS for the styling, and Java | aScript as required. |  |  |  |  |  |  |  |  |  |
| <pre><!DOCTYPE html>      <html lang="en"> <html <="" html="" lang="en"> <html <="" html="" lang="en"> <html <="" html="" lang="en"> <html <="" html="" lang="en"> &lt;html lang="en"&lt;/html lang="en&lt;/th&gt;<th colspan="13"><pre>elements. Here's a simplified example of how you might code this in HTML and CSS:</pre></th></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></html></pre> | <pre>elements. Here's a simplified example of how you might code this in HTML and CSS:</pre>                                                      |                                                                                                          |                                                                                                              |                      |  |  |  |  |  |  |  |  |  |
| + Enter message or upload fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | le                                                                                                                                                |                                                                                                          |                                                                                                              | ⊳                    |  |  |  |  |  |  |  |  |  |
| None Up-Vote Down-Vote Regenerate Send                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                   |                                                                                                          |                                                                                                              |                      |  |  |  |  |  |  |  |  |  |

Please visit our demos to try more <a href="https://llava-next.lmms-lab.com/">https://llava-next.lmms-lab.com/</a>



## LLaVA-NeXT Video

Takeaway message 1: A unified view of images and videos is important for leveraging high-quality image data in video understanding.



LLaVA-NeXT Video digests a set of image patches/frames as a sequence of concatenated visual tokens, allowing unified view of image and video input.

## LLaVA-NeXT Video

Takeaway message 2: Direct Preference Optimization (DPO) from AI Feedback Direct Preference Optimization from AI Feedback allows an LMM to reduce hallucination and follow the instructions better.

User: Please provide a detailed description of the video, focusing on the main subjects, their actions, the background scenes, and the temporal transitions.



#### LLaVA-NeXT-Video-DPO

The video depicts a dynamic and surreal scene where the action of surfing is juxtaposed with an indoor setting. In the foreground, there are two surfers riding waves, one slightly ahead of the other, maintaining their balance on surfboards. The surfer in the foreground is skillfully navigating the crest of a wave, while the one behind is positioned on the face of the wave, both displaying athletic postures typical of surfing. The waves are large and crashing, with the wave in the background creating a dramatic arc that suggests motion and power.

The background is an opulent interior space with high vaulted ceilings, ornate detailing, and classical architecture, including arches and what appears to be marble or stone work. The lighting is warm, with a golden hue that contrasts with the cool tones of the water. The architecture suggests a grand hall or a space designed for public gatherings or performances, possibly inspired by classical or neoclassical styles.

The temporal transition in the video is interesting as it captures a moment of action (the surfers riding the wave) within a stationary, non-moving environment (the interior space). This creates a surreal effect, blending the dynamic motion of the ocean with the static elegance of a building interior. The image is a blend of two disparate subjects—the exhilarating sport of surfing and the serene grandeur of architectural design—into a single, captivating composition.

#### LLaVA-NeXT-Video

The video depicts a large wave crashing inside a building, with a surfer riding the wave. The surfer is positioned in the center of the frame, skillfully navigating the wave's crest. The wave is massive, filling the majority of the space from the top to the bottom of the frame, with its white foam and water spray creating a dynamic and powerful visual effect. The background of the scene is a grand hall with high ceilings and ornate architecture, featuring arches and columns that add a sense of grandeur to the setting. The lighting is dim, with the focus on the surfer and the wave, casting shadows and highlighting the contours of the wave's movement. The camera captures the surfer from a low angle, emphasizing the height of the wave and the surfer's skill in maintaining balance. As the wave begins to break, the surfer is seen riding it towards the right of the frame, creating a wore is prominent, adding to the immersive experience. The video concludes with a shot of the surfer disappearing from view as the wave subsides, leaving the grand hall.

We illustrate two examples to demonstrate the superiority of DPO. Texts of interest are highlighted in blue, while parts that might contain hallucinations are marked in red

## LLaVA-NeXT Video

Takeaway message 3: Our LLaVA-NeXT-Video 34B model achieves SoTA performance on the recently proposed, most comprehensive diagnosis benchmark: Video-MME.

| Models                  | LLM    | Short    | Short (%)   |             | m (%)   | Long        | (%)         | Overall (%) |         |  |  |
|-------------------------|--------|----------|-------------|-------------|---------|-------------|-------------|-------------|---------|--|--|
|                         | Params | w/o subs | w/ subs     | w/o subs    | w/ subs | w/o subs    | w/ subs     | w/o subs    | w/ subs |  |  |
|                         |        | Open of  | & Closed-s  | source Imag | e MLLMs |             |             |             |         |  |  |
| Qwen-VL-Chat [5]        | 7B     | 46.4     | 47.1        | 38.1        | 39.8    | 38.0        | 38.3        | 40.9        | 41.7    |  |  |
| Qwen-VL-Max [5]         | -      | 56.5     | 58.3        | <b>49.9</b> | 49.8    | <b>49.0</b> | 46.9        | 51.8        | 51.7    |  |  |
| InternVL-Chat-V1.5 [9]  | 20B    | 61.2     | 62.4        | 47.3        | 50.0    | 46.0        | 47.0        | 51.5        | 53.2    |  |  |
| Open-source Video MLLMs |        |          |             |             |         |             |             |             |         |  |  |
| Video-LLaVA [28]        | 7B     | 45.9     | 47.1        | 38.1        | 40.2    | 37.3        | 39.6        | 40.4        | 42.3    |  |  |
| VideoChat2 [24]         | 7B     | 38.2     | 41.6        | 33.2        | 34.3    | 29.7        | 31.9        | 33.7        | 35.9    |  |  |
| ST-LLM [33]             | 7B     | 47.0     | 49.9        | 36.9        | 42.2    | 31.8        | 37.3        | 38.6        | 43.2    |  |  |
| Chat-UniVi-V1.5 [19]    | 7B     | 46.3     | 51.4        | 40.3        | 45.2    | 36.9        | 42.3        | 41.2        | 46.3    |  |  |
| LLaVA-NeXT-Video [68]   | 34B    | 63.1     | 66.4        | 51.1        | 53.2    | 44.6        | <b>48.7</b> | 52.5        | 56.0    |  |  |
|                         |        |          | Closed-se   | ource MLLN  | 1s      |             |             |             |         |  |  |
| GPT-4V [45]             | -      | 71.4     | 74.5        | 56.5        | 59.3    | 54.2        | 57.2        | 60.7        | 63.7    |  |  |
| GPT-40 [46]             | -      | 77.1     | 77.5        | 62.1        | 63.0    | 59.2        | 56.7        | 66.2        | 65.8    |  |  |
| Gemini 1.5 Pro [51]     | -      | 82.3     | <b>84.7</b> | 75.3        | 82.6    | 67.5        | 76.3        | 75.7        | 81.6    |  |  |

Info for LLaVA-NeXT Video:

1. Technical report: <u>https://llava-vl.github.io/blog/2024-04-30-llava-next-video/</u> 2. Model and code: https://github.com/LLaVA-VL/LLaVA-NeXT?tab=readme-ov-file



## LMMs-Eval

### **Holistic Evaluation of LMMs**

- 1. Standardized process of evaluation for (easily) reproducible results.
- 2. Holistic evaluation to reflect model performance across 20-30 benchmarks.

### Integration to LMMs Development Life Cycle

- 1. Efficient evaluation during development (100+ of production checkpoints)
- 2. Easy (<10 minutes) integration of new (updated) datasets/models.
- 3. Analysis tools for developers to aware of drawbacks of current models.

### **Comprehensive Benchmarks Evaluation Guides AI**

### Holistic evaluation is necessary

• More evaluations from different dimensions could better reflect model's overall performance.

| Method         | FT | Shot | OKVQA (I) | VQAv2 (I) | COCO (I) | MSVDQA (V)          | VATEX (V) | VizWiz (I) | Flick30K (I) | MSRVTTQA (V)        | iVQA (V) | YouCook2 (V) | STAR (V) | VisDial (I)   | TextVQA (I) | NextQA (I) | HatefulMemes (I) | RareAct (V) |
|----------------|----|------|-----------|-----------|----------|---------------------|-----------|------------|--------------|---------------------|----------|--------------|----------|---------------|-------------|------------|------------------|-------------|
| Zero/Few       |    |      | [34]      | [114]     | [124]    | [ <mark>58</mark> ] |           |            |              | [ <mark>58</mark> ] | [135]    |              | [143]    | [ <b>79</b> ] |             |            | [85]             | [85]        |
| shot SOTA      | X  |      | 43.3      | 38.2      | 32.2     | 35.2                | -         | -          | -            | 19.2                | 12.2     | -            | 39.4     | 11.6          | -           | -          | 66.1             | 40.7        |
| 51101 0 0 11 1 |    | (X)  | (16)      | (4)       | (0)      | (0)                 |           |            |              | (0)                 | (0)      |              | (0)      | (0)           |             |            | (0)              | (0)         |
|                | X  | 0    | 41.2      | 49.2      | 73.0     | 27.5                | 40.1      | 28.9       | 60.6         | 11.0                | 32.7     | 55.8         | 39.6     | 46.1          | 30.1        | 21.3       | 53.7             | 58.4        |
| Flamingo-3B    | ×  | 4    | 43.3      | 53.2      | 85.0     | 33.0                | 50.0      | 34.0       | 72.0         | 14.9                | 35.7     | 64.6         | 41.3     | 47.3          | 32.7        | 22.4       | 53.6             | -           |
|                | X  | 32   | 45.9      | 57.1      | 99.0     | 42.6                | 59.2      | 45.5       | 71.2         | 25.6                | 37.7     | 76.7         | 41.6     | 47.3          | 30.6        | 26.1       | 56.3             | -           |
|                | X  | 0    | 44.7      | 51.8      | 79.4     | 30.2                | 39.5      | 28.8       | 61.5         | 13.7                | 35.2     | 55.0         | 41.8     | 48.0          | 31.8        | 23.0       | 57.0             | 57.9        |
| Flamingo-9B    | ×  | 4    | 49.3      | 56.3      | 93.1     | 36.2                | 51.7      | 34.9       | 72.6         | 18.2                | 37.7     | 70.8         | 42.8     | 50.4          | 33.6        | 24.7       | 62.7             | -           |
| -              | X  | 32   | 51.0      | 60.4      | 106.3    | 47.2                | 57.4      | 44.0       | 72.8         | 29.4                | 40.7     | 77.3         | 41.2     | 50.4          | 32.6        | 28.4       | 63.5             | -           |
|                | ×  | 0    | 50.6      | 56.3      | 84.3     | 35.6                | 46.7      | 31.6       | 67.2         | 17.4                | 40.7     | 60.1         | 39.7     | 52.0          | 35.0        | 26.7       | 46.4             | 60.8        |
| El             | ×  | 4    | 57.4      | 63.1      | 103.2    | 41.7                | 56.0      | 39.6       | 75.1         | 23.9                | 44.1     | 74.5         | 42.4     | 55.6          | 36.5        | 30.8       | 68.6             | -           |
| Flamingo       | X  | 32   | 57.8      | 67.6      | 113.8    | 52.3                | 65.1      | 49.8       | 75.4         | 31.0                | 45.3     | 86.8         | 42.2     | 55.6          | 37.9        | 33.5       | 70.0             | -           |
| Destroined     |    |      | 54.4      | 80.2      | 143.3    | 47.9                | 76.3      | 57.2       | 67.4         | 46.8                | 35.4     | 138.7        | 36.7     | 75.2          | 54.7        | 25.2       | 79.1             |             |
| FICUAINED      | V  |      | [34]      | [140]     | [124]    | [28]                | [153]     | [65]       | [150]        | [51]                | [135]    | [132]        | [128]    | <b>[79</b> ]  | [137]       | [129]      | [62]             | -           |
| FI SUIA        |    | (X)  | (10K)     | (444K)    | (500K)   | (27K)               | (500K)    | (20K)      | (30K)        | (130K)              | (6K)     | (10K)        | (46K)    | (123K)        | (20K)       | (38K)      | (9K)             |             |

Flamingo model was (at 2022) a state-of-the-art multimodal model on multiple datasets across image and video modalities.

Table 1: **Comparison to the state of the art.** A *single* Flamingo model reaches the state of the art on a wide array of image (I) and video (V) understanding tasks with few-shot learning, significantly outperforming previous best zero- and few-shot methods with as few as four examples. More importantly, using only 32 examples and without adapting any model weights, Flamingo *outperforms* the current best methods – fine-tuned on thousands of annotated examples – on seven tasks. Best few-shot numbers are in **bold**, best numbers overall are <u>underlined</u>.

### **Comprehensive Benchmarks Evaluation Guides Al**

Standardized and reproducible evaluation is necessary



Previously, developers collect and evaluate on each task. Non-standardized tasks make reproducibility and comparison with prior work expensive (and sometimes impossible)

### **Comprehensive Benchmarks Evaluation Guides Al**

Benchmarks emerge fast. Everyday, we have new benchmarks.



*Previously, developers collect and evaluate on each task.* 

Non-standardized tasks make reproducibility and comparison with prior work expensive (and sometimes impossible)



### LMMs-Eval is an efficient, standardized and reproducible evaluation framework

for accelerating the development for large-scale multimodal models



### LMMs-Eval: Unified interface for multimodal tasks and models.

![](_page_66_Figure_1.jpeg)

batch\_gpt4.py ٦٩. minicpm\_v.py Claude.py ٩ mplug\_owl\_video.py from\_log.py 🖺 fuyu.py ٩ phi3v.pv gemini\_api.py ٦ qwen\_vl.py 🗋 gpt4v.py ٦ qwen\_vl\_api.py idefics2.py ٦ reka.py instructblip.py internvl.py video\_chatgpt.py ٩ llama\_vid.py ቦ٩ video\_llava.py 🗋 llava.py ٩ xcomposer2\_4KHD.py 🗋 llava\_hf.py (b) Models

LMMs-Eval integrates 50+ image tasks, 10+ video tasks and ~10 state-of-the-art level LMM models.

## FunQA: Surprising Video Understanding

## **FunQA** HumorQA Demo

![](_page_68_Picture_0.jpeg)

FunQA 4.3K Video Clips 312K Free-Text QA Pairs 34.2 average answer word length

![](_page_68_Figure_3.jpeg)

HumorQA 1,769 Video Clips 142.1K Free-Text QA Pairs 28.2 average answer word length

![](_page_68_Figure_5.jpeg)

MagicQA 1,672 Video Clips 92.1K Free-Text QA Pairs 22.7 average answer word length

![](_page_68_Picture_7.jpeg)

#### In what period the magic took place?

The magic moment is from frame 71 to 119.

#### Can you describe the magical segment of this video?

The man reached out his hand, took one of the clouds from the sky, and put it into his mouth.

#### How can you tell that the video showcases magic?

What's commonsense-violating is that, people standing on the ground can't touch the clouds, so the clouds can't be taken down by the man.

### What method do you think the magician used to accomplish the magic trick?

The magician used video editing technology to combine a video of reaching for the cloud with a video of eating a marshmallow to create the magic effect.

![](_page_68_Picture_16.jpeg)

![](_page_69_Picture_0.jpeg)

![](_page_69_Picture_1.jpeg)

**FunQA** 4.3K Video Clips 312K Free-Text QA Pairs 34.2 average answer word length

![](_page_69_Figure_3.jpeg)

HumorQA 1,769 Video Clips 142.1K Free-Text QA Pairs 28.2 average answer word length

![](_page_69_Figure_5.jpeg)

MagicQA 1,672 Video Clips 92.1K Free-Text QA Pairs 22.7 average answer word length

![](_page_69_Picture_7.jpeg)

In what period the creative took place?

The creative moment is from frame 71 to 1800.

#### Can you describe the content of this video?

A group of swimmers appears to jump into the water for a swimming competition. However, these swimmers, rather than jump into the water, run to a board in front of them. In the board there are five lanes of water looks like swimming lanes. Each lane has a floating swimmer toy to represent the swimmer. The swimmers need to drink the water. The faster they drink, the faster the floating toy approaching to the finish line.

Can you explain why the video is creative?

•••

• •

## FunQA: Surprising Video Understanding

![](_page_70_Picture_1.jpeg)

![](_page_70_Figure_2.jpeg)

HumorQA: 1.8K videos, avg. 7s 141.3K QA pairs

### CreativeQA:

0.9K videos, avg. 48s 78.7K QA pairs

MagicQA: 1.6K videos, avg. 10s 91.9K QA pairs

## FunQA: Surprising Video Understanding

![](_page_71_Picture_1.jpeg)

H2: Describe the comedic scene in the video

The comedic scenes depict a man acting as a messenger, pretending to have a seizure and falling to the ground, and a man pretending his face is on fire while trying to eat a French fry.

One person was multitasking by eating while using their phone, and another person accidentally flicked ketchup onto their face.

#### H3: Can you explain why the content is humorous?

The video's humorous elements include the man's over-the-top reaction to eating the fries, his attempts to eat the fry with his mouth open, and the messenger's role-playing as a seizing man.

![](_page_71_Picture_7.jpeg)

**Otter (Trained on Dense Caption)** 

The most amusing aspect of the video is that the man had barely started his meal when he had to rush to answer the phone. He had to hold the burger in one hand and use the other to drag himself away, which was quite humorous.

![](_page_71_Picture_10.jpeg)

#### Otter (trained on FunQA)
## FunQA: Surprising Video Understanding

|                        |              | HumorQA                 |                    |                               |    | CreativeQA                                                               |                  |                        |      | MagicQA |                    |                    |
|------------------------|--------------|-------------------------|--------------------|-------------------------------|----|--------------------------------------------------------------------------|------------------|------------------------|------|---------|--------------------|--------------------|
| _                      | H1           | H2                      | H3                 | H4                            | C1 | C2                                                                       | C3               | C4                     | C5   | M1      | M2                 | M3                 |
| - Caption-based Model  |              |                         |                    |                               |    |                                                                          |                  |                        |      |         |                    |                    |
| mPI IIG [47]           | _            | <b>1.5 / 16.4 / 1.0</b> | 1.1 / 12.5 / 0.4   | 0.6 / 7.5 / 0.1               | _  | 0.4 / 13.4 / 0.0                                                         | 0.7 / 12.6 / 0.1 | 0.3 / 3.2 / 0.0        |      | _       | 1.2 / 15.8 / 0.5   | 0.9 / 8.9 / 0.4    |
| IIII 200 [47] -        | -            | 19.9 / 16.0             | 25.7 / 18.1        | 22.1 / 17.3                   | _  | 14.9 / <b>24.3</b>                                                       | 24.2 / 9.0       | 20.8 / 13.7            | -    | _       | 19.7 / 16.9        | 21.2 / 8.8         |
| CIT(I, M) [52]         |              | 0.5 / 12.8 / 0.2        |                    | 1.1 / 7.7 / 0.7               |    | 0.0 / 6.4 / 0.0                                                          |                  | 0.3 / 1.5 / 0.2        |      |         | 0.2 / 11.2 / 0.1   |                    |
| GII (L.M.) [52] -      | -            | 22.4 / 22.0             | -                  | 17.0 / 26.8                   | -  | 14.4 / 5.0                                                               | -                | 7.1 / 25.2             | -    | -       | 19.4 / 12.7        | -                  |
|                        | T (I V) [52] | 1.2 / 16.9 / 0.6        |                    | 1.0 / <b>8.8</b> / <b>0.7</b> |    | 0.1 / 8.3 / 0.0                                                          |                  | 0.5 / 2.8 / 0.4        |      |         | 0.6 / 13.7 / 0.1   |                    |
| GIT (L.V.) [52] -      | -            | 33.3 / 31.5             | -                  | <b>25.9</b> / 33.2            | -  | 20.5 / 5.0                                                               | -                | 10.5 / 23.3            | -    | -       | 29.8 / <b>21.4</b> | -                  |
| - Instruction-based Mo | del          |                         |                    |                               |    |                                                                          |                  |                        |      |         |                    |                    |
| VideoChat [35]         |              | 0.5 / 13.7 / 0.0        | 0.5 / 13.5 / 0.0   | 0.8 / 5.1 / 0.5               |    | 0.3 / 7.5 / 0.0                                                          | 0.3 / 7.7 / 0.0  | 0.2 / 1.2 / 0.2        | 67.5 |         | 0.6 / 15.5 / 0.0   | 0.3 / 9.2 / 0.0    |
| videoChat [55]         | -            | 44.0 / 37.9             | <b>45.4</b> / 31.9 | 20.2 / 61.7                   | -  | 21.7 / 10.9                                                              | 22.8 / 27.7      | 7.3 / <b>51.1</b>      |      | -       | 47.4 / 14.2        | 43.1 / 24.6        |
| Video ChatCDT [26]     |              | 0.5 / 14.0 / 0.1        | 0.7 / 12.4 / 0.1   | 0.4 / 3.2 / 0.2               |    | 1.1/ <b>19.8</b> /0.2 0.8/17.3/0.1 0.2/1.9/0.2 0.7/20.8/0.0 0.5/11.3/0.0 |                  |                        |      |         |                    |                    |
| video-ChatGPI [36] -   | -            | 39.9 / 20.7             | 40.1 / <b>33.0</b> | 18.6 / 47.5                   | -  | <b>45.8</b> / 19.1                                                       | 45.2 / 30.1      | 18.8 / 44.5            | 85.4 | -       | <b>50.0</b> / 11.8 | 43.3 / <b>29.2</b> |
| Ottom (D,C) $[24]$     |              | 1.1 / 14.3 / 0.4        | 1.2 / 14.2 / 0.4   | 0.5 / 5.4 / 0.1               |    | 0.5 / 13.8 / 0.1                                                         | 1.0 / 16.8 / 0.2 | 0.3 / 2.3 / 0.1        | 45.0 |         | 1.0 / 15.0 / 0.3   | 1.1 / 12.8 / 0.2   |
|                        | -            | 30.2 / 9.8              | 32.3 / 13.9        | 21.7 / 13.3                   | -  | 28.7 / 11.0                                                              | 32.9 / 10.6      | 17.7 / 4.2             |      | -       | 32.5 / 14.4        | 27.3 / 13.7        |
| Otter (FunQA) [34] -   |              | <b>1.5 / 18.1 /</b> 0.9 | 1.3 / 15.4 / 0.5   | 0.8 / 5.9 / 0.5               |    | <b>1.5</b> / 19.6 / <b>0.5</b>                                           | 2.2 / 21.2 / 0.5 | 0.3 / <b>4.3</b> / 0.3 | 69.4 | -       | 2.6 / 23.8 / 1.6   | 3.4 / 20.3 / 2.6   |
|                        | -            | 38.4 / 12.2             | 42.6 / 21.0        | 24.5 / 20.0                   | -  | 40.0 / 11.9                                                              | 41.1 / 21.1      | <b>21.7</b> / 23.9     |      |         | 44.7 / 18.4        | <b>44.5</b> / 19.8 |

Otter gains significant improvement after training on FunQA training set, but the FunQA benchmark is still very challenging.







• •

WorldQA: Multimodal World Knowledge in Videos through Long-Chain Reasoning



#### (a) Multimodal Video Input



- 1. To determine where the lady went when she was absent from the video, we rely on visual cues, auditory hints, and the application of world knowledge. This forms a reasoning chain to deduce the answer.
- 2. WorldQA comprises 1007 question-answer pairs and 303 videos, spanning five types of world knowledge. On average, the reasoning chain consists of 4.45 steps.

Table 1. **Dataset comparisons.** Reason. stands for reasoning. Avg. stands for average. Q/A stands for question and answer.

| Dataset             | Multi<br>modal? | World<br>knowledge? | Avg. reason.<br>steps | Avg. length<br>(Q/A) |
|---------------------|-----------------|---------------------|-----------------------|----------------------|
| MSVD-QA [37]        | ×               | ×                   | 1.40                  | 6.6/1.0              |
| TGIF-QA [15]        | ×               | ×                   | 1.71                  | 8.7/2.1              |
| TVQA [16]           | X               | ×                   | 1.91                  | 13.4/5.3             |
| ActivityNet-QA [46] | X               | ×                   | 1.62                  | 8.7/1.2              |
| NExT-QA [35]        | ×               | ×                   | 1.31                  | 11.6/2.9             |
| Social-IQ [47]      | 1               | ×                   | 1.98                  | 11.7/11.4            |
| WorldQA             | 1               | 1                   | 4.45                  | 14.2/24.3            |

1. The questions in WorldQA require a complex reasoning process, which is evident in the answer lengths: while answers in other VideoQA datasets average below five words, those in WorldQA average 24.3 words.

2. To our knowledge, WorldQA is the first VideoQA dataset that incorporates questions necessitating world knowledge.v



WorldQA: Multimodal World Knowledge in Videos through Long-Chain Reasoning

## WorldQA

(a) Open-ended QA to multi-choice QA





Table 2. Evaluation of Large Multimodal Models (LMMs), Language Models (LLMs), and WorldRetriver in WorldQA. We introduce two upperbounds for comparison: LLMs augmented with huamn-annotated event descriptions, labeled as (Aug.) X, and the human performance. The best model in each group is highlighted in blue, while the overall top performer in all tasks is marked in red. Different types of inputs include: Q for Question, Vfor Video, I for Image, and  $V_d$  for Video Description. Langauge model param. indicates the parameter of the language model.

| Model (language model param.)        | Input    | Open<br>ended ↑ | Multi<br>choice ↑ |  |  |  |  |
|--------------------------------------|----------|-----------------|-------------------|--|--|--|--|
| Large Multimodal Models (LMMs)-Video |          |                 |                   |  |  |  |  |
| FrozenBiLM (900M) [40]               | Q,V      | 8.21            | 0.32              |  |  |  |  |
| Otter-Video (7B) [17]                | Q,V      | 24.22           | 6.11              |  |  |  |  |
| VideoChat (7B) [23]                  | Q,V      | 24.43           | 1.29              |  |  |  |  |
| LLaMA-Adapter (7B) [11]              | Q,V      | 25.87           | 12.04             |  |  |  |  |
| Video-LLaMA (7B) [48]                | Q,V      | 26.80           | 4.81              |  |  |  |  |
| Video-ChatGPT (7B) [18]              | Q,V      | 28.51           | 13.25             |  |  |  |  |
| mPLUG-Owl (7B) [44]                  | Q,V      | 31.89           | 0.75              |  |  |  |  |
| GPT-4V(ision) (-) [42]               | Q,V      | 35.37           | 32.83             |  |  |  |  |
| Large Multimodal Models (LMMs)-Image |          |                 |                   |  |  |  |  |
| Qwen-VL (7B) [4]                     | Q,I      | 24.04           | 12.80             |  |  |  |  |
| LLaVA (7B) [19]                      | Q,I      | 31.31           | 0.30              |  |  |  |  |
| Large Language Models (LLMs)         |          |                 |                   |  |  |  |  |
| Vicuna (7B) [49]                     | 0        | 22.44           | 0.00              |  |  |  |  |
| ChatGPT (20B) [24]                   | Q        | 24.24           | 0.00              |  |  |  |  |
| GPT-4 (-) [24]                       | Q        | 28.73           | 0.00              |  |  |  |  |
| LLM Agent                            |          |                 |                   |  |  |  |  |
| Ours (ChatGPT as LLM) (20B)          | Q,V      | 36.38           | 36.59             |  |  |  |  |
| Upper Bound with Human Transcription |          |                 |                   |  |  |  |  |
| (Aug.) Vicuna (7B)                   | $Q, V_d$ | 38.71           | 23.90             |  |  |  |  |
| (Aug.) ChatGPT (20B)                 | $Q, V_d$ | 46.50           | 46.06             |  |  |  |  |
| (Aug.) GPT-4 (-)                     | $Q, V_d$ | 48.46           | 56.06             |  |  |  |  |
| Human-Level Performance              |          |                 |                   |  |  |  |  |
| Human                                | Q,V      | 72.43           | 88.79             |  |  |  |  |

WorldQA: Multimodal World Knowledge in Videos through Long-Chain Reasoning

### **Unsolvable Problem Detection**

#### Evaluating Trustworthiness of Vision Language Models



#### **Unsolvable Problem Detection**

Evaluating Trustworthiness of Vision Language Models



#1: OCR #2: Celebrity Recognition #3: Object Localization #4: Attribute Recognition #5: Action Recognition #6: Attribute Comparison
#7: Nature Relation #8: Physical Relation #9: Social Relation #10: Identity Reasoning #11: Function Reasoning #12: Physical Property Reasoning
#13: Structuralized Image-text Understanding #14: Future Prediction #15: Image Topic #16: Image Emotion #17: Image Scene #18: Image Style



# Towards Building Multi-Modal AI Assistant

## Towards Building Embodied Multi-Modal AI Assistant







Octopus: Embodied Vision-Language Programmer from Environmental Feedback

