

3DTopia:

S-LAB

Foundation Ecosystem for 3D Generative Models

Ziwei Liu (刘子纬)

https://liuziwei7.github.io/ Nanyang Technological University

Learning 3D from Multi-View Supervision

Generation

Sparse Views

Single View

. . . .

Category/Text/Image Condition

3D Generative Models

Foundation Ecosystem

Overview

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

- 1. 3D Object Dataset
- 2. 3D Generative Models
- 3. 4D Generative Models
- 4. 3D Generation Evaluation

3D Object Dataset

OmniObject3D

OmniObject3D: Large-Vocabulary 3D Object Dataset for Realistic Perception, Reconstruction and Generation [CVPR 2023 Best Paper Candidate] (0.51%, 12/2359)

Perception

·0

Novel View Synthesis

Surface Reconstruction

OmniObject3D: Background & motivation

OmniObject3D: Statistics

We are still collecting data, and the size of OmniObject3D is still growing.

A new version with 18k real scanned 3D objects will be released as soon as possible.

8 0 % 05	NANYANG TECHNOLOGICAL UNIVERSITY	S-LAB
I A S	SINGAPORE	INTELLIGENCE

Dataset	Year	Real	Full 3D	Video	Num Objs	Num Cats
ShapeNet	2015		V		51k	55
ModelNet	2014		V		12k	40
Objaverse	2023		٧		818k	21k
3D-Future	2020		٧		16k	34
ABO	2021		۷		8k	63
Toys4K	2021		۷		4k	105
CO3D V1/V2	2021	٧		۷	19k/40k	50
MVImgNet	2023	۷		۷	219k	238
DTU	2014	۷	V		124	NA
GSO	2021	۷	v		1k	17
AKB-48	2022	۷	٧		2k	48
Ours	2022	V	v	٧	6k	190
					-	

Synthetic data

online assets with a

variety of data types

Multi-view image

OmniObject3D: Applications

Surface Reconstruction

Novel View Synthesis

Generation

OmniObject3D V2

OmniObject3D V2

and and are a little				
Summary	Summary	Summary	Summary	
It's a teacup.	It's a teapot.	It's a glasses case.	It's a coral simulation model.	
Appearance	Appearance	Appearance	Appearance	
This is a relatively small teacup with a brownish- red exterior and white interior, featuring a blue line pattern at the top and a rounded white bump on the bottom, structured in an overall axisymmetric manner.	This teapot is white with a gray handle positioned perpendicular to the spout, and a small round gray handle at the top of the lid; the body of the teapot is adorned with a pattern of pink lotuses, gray lotus leaves, and red buds, all structured in an asymmetric manner.	Overall purple, the box features a pink LinaBell on the surface wearing a dark purple flower and blue eyes, complemented by a row of purple and pink letters underneath, all structured in an axisymmetric manner.	The upper part of this coral simulation model is yellow, below the yellow section, there are pink and purple corals, the purple corals have white attachments on their surfaces, several colors of corals are on a brown reef, and the entire model is asymmetrical.	
Material			Material	
Ceramic, hard, reflective, smooth surface.	Material	Leather, rubber, metal, smooth surface, hard, slightly reflective. metallic.	Plastic, rough surface, hard, slightly reflective.	
Style	Ceramic, rough surface, hard, slightly reflective.	Style	Style	
Simplicity.	Style	Cartoon.	Reality.	
Function	Simplicity.	Function	Function	
Water storage.	Function	Function	Function	
	Tea making, water storage.	Store glasses, decoration.	Entertainment, decoration.	

Omni6D: Large-Vocabulary 6D Pose Estimation

3D Generative Models

3DTopia: Motivation & Overview

3DTopia: Large Text-to-3D Generation Model with Hybrid Diffusion Prior

3DTopia: Dataset Preparation

3DTopia: Method

Stage I: Tri-plane Latent Diffusion Model

Tri-plane VAE

Latent Diffusion Model

3DTopia: Method

Stage II: SDS-Based Refinement

Two-Step SDS-Based Texture Refinement

3DTopia: Demo Video

ThemeStation: Motivation

ThemeStation: Generating Theme-Aware 3D Assets from Few Exemplars [SIGGRAPH 2024]

Motivation:

Generate 3D assets from a few 3D exemplars

ThemeStation can synthesize customized3D assets based on given few exemplars.

Generated 3D galleries

ThemeStation: Method Overview

ThemeStation: a few 3D exemplar based generation

S-LAB

FOR ADVANCED

Generated 3D galleries

ThemeStation: one 3D exemplar based generation

Generated 3D galleries

HyperDreamer: Single image to 3D

HyperDreamer: Hyper-Realistic 3D Content Generation and Editing from a Single Image [SIGGRAPH Asia 2023]

Motivation:

To improve the texture resolution; add material modelling; support interactive texture editing.

3D generation and editing

HyperDreamer: Priors to use

[De-rendering, Wimbauer et al., 2022] *Material Prior*

[SAM, Kirillov et al., 2023] Semantic Prior

AI Computer Vision Research

Segment Anything Model (SAM): a new AI model from Meta AI that can "cut out" any object, in any image, with a single click

SAM is a promptable segmentation system with zero-shot generalization to unfamiliar objects and images, without the need for additional training.

→ Try the demo

HyperDreamer: Method

HyperDreamer: Demo

Make-it-Real: Reliable material inference and modelling

Motivation: Leverage Multimodal Large Language Model to provide priors for this highly ill-posed problem.

Make-it-Real: Method

Make-it-Real: Demo

Make-it-Real: Unleashing Large Multimodal Model's Ability for Painting 3D Objects with Realistic Materials

DreamGaussian: Motivation & Overview

DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [ICLR 2024 Oral] (3.75%, 86/2296)

Motivation:

Current obstacles for practical 3D generation:

Success rate and Generation speed.

3D representation matters:

- Gaussian Splatting: grow from a small number of Gaussians
- Polygonal Mesh: hard to be optimized from scratch, but good as a second stage.

Two-stage optimization

DreamGaussian: Method

Densification is important for details

to generate details.

DreamGaussian: Method

Optimize the UV-space mesh texture

Stage 2 (SDS)

SDS is ambiguous/stochastic at the denoising direction

Stage 1

We adopt a mesh stage to optimize the UV-space texture.

We learn from SDEdit (image-toimage) to enhance the details by using multi-step optimization.

Stage 2 (MSE)

DreamGaussian: Text-to-3D Results

Both stages take about 2.5 minutes to converge (due to a larger resolution of SD).

Very terrible Janus Problem, maybe due to the fast convergence.

DreamGaussian: Image-to-3D Results

Both stages take about 1 minute to converge.

Back-view is still blurry compared to front-view.

LGM: Motivation & Overview

LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation

Motivation:

- ✓ LRM (32 x 32 triplane-based, limited resolution) + Gaussian Splatting for higher fidelity
- ✓ Multi-view settings could achieve 3D generation with higher quality

LGM: Method

1. Fused multi-view Gaussian features

Cross-View Self-Attention

2. Asymmetric U-Net

high-resolution in training (e.g., 512x512)

LGM: Method

3. Meshing

Better than "density field + marching cube"

LGM: Image-to-3D

LGM: Text-to-3D

"dresser"

"swivel chair"

"astronaut"

"mushroom house"

4D Generative Models

DG4D: Motivation & Overview

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

DreamGaussian4D: Generative 4d gaussian splatting

Motivation:

- ✓ **3D Prior** + **Video Prior** for diverse and high-quality 4D generation
- ✓ 3D Gaussian Kernels could be well-suited for dynamic 4D
- ✓ Mesh Sequences could be well-optimized by using video priors
- ✓ The whole 4D generation could be resolved in 5 min

Composited Scene

DG4D: Method Overview

II) Video-to-video Texture Refinement

DG4D: Motion Representation

1. Initialization: Static 3D Gaussian

Image-to-3D Generation based on 3DGS

2. Dynamics: HexPlane Optimization

Deformation Field for 4D Generation

3. Refinement: Video Prior

Video-to-Video Refinement

DG4D: Results

L4GM: Motivation & Overview

L4GM: Large 4D Gaussian Reconstruction Model

Motivation:

Input 1: video frames

Output: a sequence of 3DGS

L4GM: Objaverse-4D dataset

Animated objects in Objaverse-1.0

44K objects (5%) / 110K animations / 500K 3D frames

After filtering, rendered in 48 views: 300M images

L4GM: Method

- Fully exploit the LGM pretrain
- Simple design for better scalaibility

L4GM: Autoregressive reconstruction for long videos

00:00

L4GM: 4D Interpolation model

L4GM: 4D Results

Input Video

L4GM (ours) Runtime: 7.0 seconds

NANYANG TECHNOLOGICAL UNIVERSITY SINGAPORE

DG4D Runtime: ~10 minutes

STAG4D Runtime: ~2 hrs

3D Generation Evaluation

GPT4Eval: Motivation & Overview

GPT4Eval: GPT-4V(ision) is a Human-Aligned Evaluator for Text-to-3D Generation [CVPR 2024]

<u>Text-to-3D</u> has gained increasing attention!

How do we achieve it?

But **evaluation metric** has lagged behind...

Use GPT-4V!

GPT4Eval: Input-text prompt generation pipeline

Living Beings Household Items	Plants Buildin Clothing and Accessor	Subject ags and Structures Ve ries Abstract Objects	ehicles Furniture Natural Elements	Electronics Food and Beverages
 Appearance Color: Specific color, patterns, gradients, Materials: Wood, metal, glass, fabric, stone, Textures: Smooth, rough, furry, scaly, Finish: Glossy, matte, translucent, opaque, Size: Small, medium, large, specific dimensions, State: New, old, worn, pristine, 	 Geometry Volume: hollow, solid, porous, or layered, Symmetry: symmetrical, asymmetrical, or radially symmetrical, Contours: smooth, jagged, irregular, or undulating, Internal Structures: empty, compartmentalized, or multi-layered, Shape: cone, cylinder, sphere, 	 Status Static: Still, motionless, Dynamic: Moving, changing, Emotional State: Happy, sad, angry, Physical State: Broken, intact, in use, Interaction: Interacting with another object or environment, 	 Scene Environment: Indoor, outdoor, urban, rural, natural, fantastical, Context: Part of a larger scene, event, or story, Lighting: Day, night, artificial, natural, shadows, highlights, Weather: Sunny, rainy, cloudy, stormy, Scale: The relative size of the object in the scene, 	<section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>

GPT4Eval: How to formulate the input?

1. Multiple views provide a full-view 3D perception

GPT-4V Caption: Intricately detailed steampunk apparatus, primarily of mechanical design nature, appearing threedimensional. With worn metallic and glassy texture. Showcasing a central clock face and multiple gauges, and accentuated by pipes, gears, and levers. Crafted mainly from aged bronze and accented with glass and wood. Intended for time display and possible atmospheric measurements, and is static. Exhibiting a Victorian steampunk style, set in an industrial workshop environment with a nostalgic and inventive mood & atmosphere.

GPT-4V Caption: Detailed potted plant on a rugged terrain, primarily of organic and naturalistic structure, appearing full and lifelike. Showcasing a vibrant green plant with yellow flowers and accompanied by smaller pink blossoms, and accentuated by a scattering of pebbles and rocks. Crafted mainly from digital textures mimicking natural materials and accented with subtle shading. Intended for environmental visualization and is static. Exhibiting a contemporary and natural aesthetic, set in an outdoor-like setting with a serene and peaceful atmosphere.

2. Paired comparison alleviates the ambiguity inherent in an absolute score

GPT4Eval: Example outputs

"Clownfish peeking out from sea anemone tendrils."

Text-Asset Alignment: The right model shows ... without any tendrils obstructing it. The left one ... and seems more consistent with the "peeking out" aspect.

<u>3D Plausibility:</u> The left model's fish appears **distorted and blended with the anemone tendrils**, while the <u>right</u> model depicts both the fish and anemone as **distinct and solid entities**, being more plausible in the real world.

Texture-Geometry Coherency: The <u>left</u> object is less compelling due to the **less integrated positioning of the fish**. The <u>right</u> object shows a strong correspondence between the geometry and the texture; **the anemone tendrils and clownfish stripes align well across both the RGB and normal maps**.

Texture Details: The texture on the left has more blur and less sharpness. The right clownfish presents with sharper, clearer textures and distinct patterns.

Geometry Details: When observing the local geometry of the normal maps, the right object exhibits **sharper details and more defined structures**. It is particularly evident within the tendrils of the anemone and the body of the clownfish, where **individual scales and tentacle textures appear more pronounced**.

Final answer: left right right right

Problem: **Comparison is noisy.** Same match can lead to different results.

E.g. {(A > B), (A > C), (B > C), (B > A), (A > B), ...}

Our solution: use **Elo system** from chess

Elo score's assumption:

- each player has a **unique score** quantifying the performance
- When two players compete, we draw a number from Gaussian whose mean equals their score; the player who got a larger number wins.

$$\Pr(``i \text{ beats } j") = \left(1 + 10^{(\sigma_j - \sigma_i)/400}\right)^{-1}$$

GPT4Eval: Experiments

Our metric is human-alignment across criteria

Methods	Alignment	Plausibility	Color-Geo	Texture	Geometry	Average
PickScore [34]	0.667	0.484	0.458	0.510	0.588	0.562
CLIP-S [23]	0.718	0.282	0.487	0.641	0.667	0.568
CLIP-E [23]	<u>0.813</u>	0.426	0.581	0.529	0.658	0.628
Aesthetic-S [58]	0.795	0.410	<u>0.564</u>	0.769	0.744	0.671
Aesthetic-E [58]	0.684	0.297	0.555	<u>0.813</u>	0.684	0.611
Ours	0.821	0.641	<u>0.564</u>	0.821	0.795	0.710

Kendall's Tau between metric predicted ranking and expert predicted ranking (higher is better). Our metrics **reach top-2 alignment in all six criteria** while existing automatic metrics are usually good at one or two.

3DGen-Bench: 3D Generation Human Preference Arena

2 Tracks

- 1k+ prompts
- **10k+** generated models
- 60k paired data

3DGen-Bench

Text-to-3D Arena (battle) Text-to-3D Arena (side-by-side) Text-to-3D Direct Chat Text-to-3D Leaderboard About Us

X 3DGen-Arena X : Benchmarking Text-to-3D generative models Rules

- Input prompt to two anonymous models in same area and vote for the better one!
- Sample a prompt and click "Send" to start a generation.
- When the results are ready, click the buttons below to vote
- Until all dimensions have been voted, the anonymous models are displayed.
- Click "Clear" to start a new round.

🏆 Arena Elo

Find out who is the 🧴 text-to-3D generation models! More models are going to be supported.

The Leaderboard is coming soon

Generating now!

C Expand to see all Arena players		•
DreamFusion: Text-to-3D using 2D Diffusion and SDS Loss	GRM: GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation	Latent-NeRF: Latent-NeRF for Shape-Guided Generation of 3D Shapes and Textures
LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching	Magic3D: High-Resolution Text-to-3D Content Creation	MVDream: Multi-view Diffusion for 3D Generation
Point E: A System for Generating 3D Point Clouds from Complex Prompts	Shap-E: Generating Conditional 3D Implicit Functions	Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation

3DGen-Bench: 3D Generation Human Preference Arena

S-LAB FOR ADVANCED INTELLIGENCE

Thank you!

