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Do 2D GANs Model 3D Geometry?

Natural images are projections of 3D objects on a 2D image plane.
An ideal 2D image manifold (e.g., GAN) should capture 3D geometric properties.

The following example shows that there is a direction in the GAN image manifold that
corresponds to viewpoint variation.
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Latent space StyleGAN
Generator
(Karras et al., 2020) Image space




Can we Make Use of such Variations?

Can we make use of such variations for 3D reconstruction?

If we have multiple viewpoint and lighting variations of the same instance, we can infer
its 3D structure.

Let’s create these variations by exploiting the image manifold captured by 2D GANs!
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Challenge

Generator
Latent space t;_;,j

It is non-trivial to find well-disentangled latent directions that control viewpoint
and lighting variations in an unsupervised manner.

Image space



Our Solution

Idea 1: For many objects such as faces and cars, a convex shape prior like ellipsoid
could provide a hint on the change of their viewpoints and lighting conditions.

S
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Idea 2: Use GAN inversion constrained by this prior to “find” the latent directions.




Steps

-
* Initialize the shape with ellipsoid. ‘] k’
* Render ‘pseudo samples’ with different ?\eode rjE’
viewpoints and lighting conditions. _ OW' g o)
 GAN inversion is applied to these samples L
to obtain the ‘projected samples’.

~~j(various viewpoints & lightings)
O:Ol“//h/
/ . t heidb
* ‘Projected samples’ are used as the Inpu '”'f:ape be l] m

ground truth of the rendering process to (stage 3)

optimize the 3D shape. Ejm
* |terative training to progressively refine

projected samples

GAN Inversion

the shape.



GANZ2Shape

Stepl: v7 1 5 r\
Initialize shape with ellipsoid. view light depth albedo

Reconstruction D Encoder
Optimize albedo network A. L°SS J

m Encoder - Decoder
t [— Renderer Fixed Network
-
Network to be
reconstruction T (a) Step 1 optimized

Input image
. depth network
albedo network

|
D

0, = arg minﬁ(I,cD(D(I),A(I), V(I), L(I))) A

V: viewpoint network

L.

®

L

0 A

lighting network
. differentiable render
. reconstruction loss
(L1+perceptual)



GANZ2Shape

input I Random

sample

‘ Reconstructlon
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Step2: Mit view light  depth albedo LllJ L k“] h]
R e e - o
generatort’”l]

pseudo samples {I;} projected samples {I

Render ‘pseudo samples’ {L; } with

various viewpoints & lightings. L §<— Renderer ﬁ """ [ E‘ l]l,]

Perform GAN inversion to the .

reconstruction | (a) Step 1 (b) Step 2

pseudo samples to obtain the
‘projected samples’ {I;}.
Encoder

Optimize latent encoder E. D

Original |atent m Encoder - Decoder

COde Fixed Network

0r = argmmzz:( (L) +w)) + A E(T)]2
m optimized
SR \ p
latent offset AW; L2

regularization



GANZ2Shape
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. Reconstruction

Ad
Step3: ~ 1 l l
Reconstruct ‘projected samples’ \t t g X ‘h
with shared depth & albedo and . depth albedo view. . light bJ hv]
1 - EjEdtE

independent view & light. Reconstruction Ll H

............. )R]

<— Renderer <

Optimize network V, L, D, A. t

(c) Step 3

N S
0p,04,0y,0; = argmin EZ[Z(Ii,d)(D(I),A(I),V(I@-),L(Ii))) + A2 Lmooth (D(T))

0p,04,0v.0L

Loss

D Encoder
m Encoder - Decoder

Fixed Network

Network to be
optimized

smoothness
term



3D Reconstruction Results

Without any 2D keypoint or 3D
annotations

Unsupervised 3D shape
reconstruction from
unconstrained 2D images

(a) Ours

Without symmetry assumption B T |
Work on many object categories - b G b s
such as huma faces, cars, ¥ " \’ -

buildings, etc. Textured

C I I I R I R R I R R )

(b) Unsup3d

Input 3D Shape Normal Textured Sample 3D Shape Normal Textured

Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. Unsupervised learning of probably symmetric deformable 3D objects from images in the
wild. In CVPR, 2020



3D Reconstruction Results

Input Relighting
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Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. Unsupervised learning of probably symmetric deformable 3D objects from images in the
wild. In CVPR, 2020



3D Reconstruction Results

Input Reconstruction

Table 1: Comparisons on the BFM dataset. We report SIDE and
MAD errors. ‘Symmetry’ indicates whether the symmetry assump-
tion on object shape is used. We outperform others on both metrics.

No. Method Symmetry SIDE (x107%)] MAD (deg.)] 2 !

(1)  Supervised N 0.419 10.83 S ‘

(2)  Const. null depth / 2.723 43.22

(3) Average g.t. depth / 1.978 22.99 - B

(4)  Unsup3d (Wu et al.|2020) Y 0.807 16.34 ',’1'.'2"’

(5)  Ours (w/o regularize) Y 0.925 16.42 Z A
[(6)_ Ours Y 0.756 14.81 | >

(7)  Unsup3d (Wu et al./[2020) N 1.334 33.79 :

(8) _ Ours N 1.023 17.09 Figure 5: Results without

symmetry assumption.

Shangzhe Wu, Christian Rupprecht, and Andrea Vedaldi. Unsupervised learning of probably symmetric deformable 3D objects from images in the
wild. In CVPR, 2020



3D-aware Image Manipulation

Input

Rotation-3D

Rotation-GAN

Relighting-3D

i
Relighting-GAN

* Effect-3D: Rendered using the reconstructed 3D shape and albedo.

» Effect-GAN: project Effect-3D on the GAN image manifold using the trained encoder E.



3D-aware Image Manipulation

GANSpace SeFa  Ours (GAN) Ours (3D)

bk
£t

Table 2: Identity-preserving face rotation. We com-
pare with HoloGAN, GANSpace, and SeFa. The met-
rics are 1dentity distances measured as angles in the
ArcFace feature embeddings.

front

Method error_mean (deg.)] error_max (deg.)]

HoloGAN 47.38 69.24
GANSpace 41.17 58.93
SeFa 41.79 60.73
Ours (3D) 28.93 43.02
Ours (GAN) 39.85 57.21

Nguyen-Phuoc, Thu, et al. "Hologan: Unsupervised learning of 3d representations from natural images.” /CCl/2019.
Harkonen, Erik, et al. "GANSpace: Discovering Interpretable GAN Controls." N/PS 2020.
Shen, Yujun, and Bolei Zhou. "Closed-form factorization of latent semantics in gans.” CV/PR 2020.
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More Results

Input 3D mesh Normal Textured Rotation Relighting



Relighting

Textured

Rotation
Textured

Normal

Shape




Summary

@ i) Et;jbj—r

 We demonstrate that 2D GANs inherently capture the underlying 3D geometry of
objects by learning from RGB images.

* Our method is a powerful approach for unsupervised 3D shape learning from
unconstrained 2D images, and does not rely on the symmetry assumption.

We are doing Shape-from-X, where X=GAN.

* We achieve accurate 3D-aware image manipulation via GANs without borrowing
external 3D models.

* Our method provides a new perspective for 3D shape generation.
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Variational Relational
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Background: Essential Question

Partial Observations (2.5D)
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Background: Problem Definition

i PAS
Incomplete Cars ' 0 Real Scans for real-world 3D objects:
(Lidar, Kitti) _
L . .
' 1) sparse; 2) noisy; 3) incomplete
Incomplete Chair _ .
(RGBD camera, ScanNet) v" 3D point cloud completion:

based on partial shapes (2.5D)

Incomplete Table
(RGBD camera, ScanNet)
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Problem Analysis

€ Incomplete Point Cloud V.S. Complete Point Cloud :
O Surfaces: unevenly distributed

0 Geometric Details: partially preserve local structures

O Multi-modal Completions:  multiple possible complete point clouds
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VRCNet: Overview ) RSty | o sovces

I * ; ’ ke ‘ ’ 2 Knots Observed @) V2 ‘ 1 Knot Observed
" % % 3D shape completion is
2 D 4»,) .
— — ~ & | expected to recover plausible yet
Observation Completion Completion (C)
’ @ ‘ ‘ 2 Knots Observed @) 0 Knot Observed fine_grained Complete Sha pes by
A. 1 M M . .
L2 M ok learning  relational  structure
R a4 & é 5 = | properties.
e Ground Complete Partial Our Complete Partial Our
PCN GRNet NSFA Truth Shape Observation Results Shape Observation Results

(a) Two consecutive stages:
probabilistic modeling (PMNet) and relational enhancement (RENet)
(b) Qualitative Results: better shape details

(c) Completion conditioned on partial observations
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Our Contributions
1. We propose a novel Variational Relational point Completion Network (VRCNet),
and it first performs probabilistic modeling using a novel dual-path network

followed by a relational enhancement network.

2. We design multiple relational modules that can effectively exploit and fuse
multiscale point features for point cloud analysis, such as the Point Self-

Attention Kernel and the Point Selective Kernel Module.

3. Furthermore, we contribute a large-scale multi-view partial point cloud (MVP)

dataset with over 100,000 high-quality 3D point shapes.

Extensive experiments show that VRCNet outperforms previous SOTA

methods on all evaluated benchmark datasets.
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Probabilistic Modeling Network (PMNet) = =

|
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\ : wews |1 Linear Residual Block =% Training Only
1

i
5 & B = = i
E N g Expand = Eé g Prior ‘ sample ;m N Reconstructed i :
Point Cloud N ENE il Inference Point Cloud ! o :
I G [ i 2 Linear Residual Blocks Training & Testing ;
: _ i |
H : : PR : @  Element-wise Product ﬁ Distribution link |
: Share ; :
Shagre WEIEghtS ” Weights : @ Element-wise summation © Concatenation |
(; % 2\ % % s W . sample Coarse Relational W Fine
L':;:T(;I::: 3R38(2 P d@ Fie g% g riﬂe"or @ Complete @ Enhancement Complete
L 575 |E 5|57 J nference . Dot Clond ey J pompete
k Probabilistic Modeling Network (PMNet) /
Two parallel paths: 7 ¢ 3 PN W [FOVAREY A :
p p :E’rec = — AKL [q¢5 (Zle) H p(Zg)} i

1) the upper reconstruction path (orange line); | | t Epgara () Bas (2l ) [ 108 05 (Y |2g) |
2) the lower completion path (blue line). j Leom = — AKL|[q4(2g|Y) || pe(2g]X)]

+ Eppora (%) Epy (21x) [ log 95 (Y |2g) |
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Multi-View Partial Point Cloud Dataset

[ J
@ @
(=3 ) @
@ 4 @
o —¥=re
@
@ @ @ »
@

(a) 26 uniformly distributed
camera poses

N 3 26 partial point clouds for
. an airplane CAD model

(b) The 26 rendered incomplete point clouds for this 3D airplane
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(c) Rendered partial point clouds with different resolutions

Uniformly Sampling Poisson Disk Sampling
(d) Sampled complete point clouds with different sampling methods
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Partial Points with Different Resolutions ~ " ™

Render with 640 x 480 (Medium) Render with 1600 x 1200 (High)
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MVP Dataset: Ground Truth Comparison e e
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MVP Dataset

Table 1: Comparing MVP with existing datasets. MVP has many appealing properties, such as 1) diversity of uniform
views; 2) large-scale and high-quality; 3) rich categories. Note that both PCN and C3D only randomly render One incomplete
point cloud for each CAD model to construct their testing sets. (C3D: Completion3D; Cat.: Categories; Distri.: Distribution;
Reso.: Resolution; PC: Point Cloud; FPS: Farthest Point Sampling; PDS: Poisson Disk Sampling. Point cloud resolution is
shown as multiples of 2048 points.)

4Cat Training Set Testing Set Virtual Camera Complete PC Incomplete PC
@1 #CAD  #Pair | #CAD  #Pair | Num.  Distri. Reso. Sampling  Reso. Sampling  Reso.
PCN [29] 8 28974 ~200k | 1200 1200 8 Random 160x120 Uniform 8x Random  ~3000
C3D [21] 8 28974 28974 | 1184 1184 1 Random 160x120 Uniform 1% Random 1x
MVP 16 2400 62400 | 1600 41600 26 Uniform 1600x1200 PDS 1/2/4/8x FPS 1
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Completion Results on MVP

Table 2: Shape completion results (CD loss multiplied by 10*) on our multi-view partial point cloud dataset (16,384 points).
VRCNet outperforms all existing methods by convincing margins. Note that besides the conventional 8 categories in existing
datasets, MVP allows evaluation on 8 additional categories.

5 8 s s & 2 8 s £, § §F 3 %
Method § 3 § 5 5 s 3§ 2 g & = s 8§ £ 2 F | A
PCN [29] 2.95 4.13 3.0 7.07 14.93 556  7.06 6.08 12,72 573 6.91 2.46 1.02 3.53 3.28 2.99 6.02
TopNet [21] 272 425 340 795 1701 604 742 604 | 1160 562 822 237 133 390 397 209 | 636
MSN [14] 2.07 382 276 621 12.72 474 532 480 9.93 389 585 2.12 0.69 2.48 291 1.58 4.90
Wang et. al. [23] 1.59 jed4 260 524 9.02 442 545 4.26 9.56 3.67 5.34 2.23 0.79 2.23 2.86 2.13 4.30
ECG [15] 1.41 344 236 458 6.95 3.81 4.27 3.38 7.46 310 4.82 1.99  0.59 2.05 2.31 1.66 3.58
GRNet [27] 161 466 310 472 566 461 485 353 | 7.82 296 458 297 128 224 211 161 | 387
NSFA [30] 1.51 424 275  4.68 6.04 429 484 3.02 7.93 3.87 5.99 221 0.78 1.73 2.04 2.14 3.77
VRCNet (Ours) 1.15 320 214  3.58 5.57 358 417 247 6.90 276 345 1.78  0.59 1.52 1.83 1.57 3.06
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Qualitative Results on MVP

Partial Ground
BT Clsad PCN Wang et. al. ECG GRNet NSFA Ours Truth
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Figure 6: Qualitative completion results (16,384 points) on the MVP dataset by different methods. VRCNet can generate
better complete point clouds than the other methods by learning geometrical symmetries.
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Qualitative Results on Real Scans

INPUT
PCN | f € | i
NSFA | ¢
g ¢ % v ‘g_:j‘;...-‘
VRCNet = ’(‘ £
i | 1 2 | Y o
(a) Cars from KITTI Dataset (b) Chairs from ScanNet Dataset (¢) Tables from ScanNet Dataset

Figure 7: VRCNet generates impressive complete shapes for real-scanned point clouds by learning and
predicting shape symmetries. (a) shows completion results for cars from Kitti dataset. (b) and (c) show
completion results for chairs and tables from ScanNet dataset, respectively.
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Conclusion

v' We propose a comprehensive framework for point cloud completion:

1. generate overall shape skeletons; 2. transfer local shape details

v' We design many novel and powerful point cloud learning modules:

Point Self-Attention Module (PSA); Point Selective Kernel Module (PSK)

v' We establish a Multi-View Partial (MVP) Point Cloud Dataset.

It can be used for many partial point cloud applications, such as complete, generation, registration and detection.
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Future Directions

Point Cloud Completion (single view)

O Point cloud denoise
OO CD loss cannot supervise underling 3D surfaces very well

O Improve our generation capabilities and achieve multi-modal completion
Point Cloud Consolidation (single view)

O Point cloud upsampling

0 3D mesh generation

Point Cloud Registration (multiple views)

O Partial-to-Partial point cloud registration
O 3D shape reconstruction in canonical pose

O Joint point cloud completion and registration
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Demo Video
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Partial Observations (2.5D)

Code on github
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