

Sensing, Understanding, and Synthesizing Humans in an Open World

Ziwei Liu

Nanyang Technological University

Human-Centric Al

Human-Centric Al

Robust Sensing CelebA-Spoof

Synthesizing across Modalities Sep-Stereo

Understanding beyond Recognition

Placepedia

Open World Learning

Open Compound Domain Adaptation

Robust Sensing CelebA-Spoof

Synthesizing across Modalities Sep-Stereo

Understanding beyond Recognition Placepedia

Open World Learning Open Compound Domain Adaptation

CelebA-Spoof: Large-Scale Face Anti-Spoofing Dataset With Rich Annotations

Yuanhan Zhang*^{1,2} Zhenfei Yin*² Yidong Li¹ Guojun Yin² Junjie Yan² Jing Shao² Ziwei Liu³

¹Beijing Jiaotong University

²SenseTime Research

³The Chinese University of Hong Kong

*Equal contribution

Introduction

CelebA-Spoof Dataset

1. Lack of Diversity 2. Lack of Annotations

Dataset	Year	#Subjects	#Data(V/I)	#Annotation
Replay-Attack	2012	50	1,200 (V)	
CASIA-MFSD	2012	50	600 (V)	
3DMAD	2014	14	255 (V)	
MSU-MFSD	2015	35	440 (V)	
Msspoof	2015	21	4,704 (V)	
HKBU-MARs V2	2016	12	1,008 (V)	
MSU-USSA	2016	1,140	10,260 (I)	1
Oulu-NPU	2017	55	5,940 (V)	
SiW	2018	165	4,620 (V)	
CASIA-SURF	2018	1,000	21,000 (V)	
CSMAD	2018	14	260 (V), 17 (I)	
HKBU-MARs V1 +	2018	12	180 (V)	
SiW-M	2019	493	1,628 (V)	
CelebA-Spoof	2020	10,177	625,537 (l)	43

CelebA-Spoof Dataset

Presentation Attack Instrument

Auxiliary Information Embedding Network (AENet)

Observation

Depth Maps are More Versatile

Smaller $\operatorname{APCER}_{\mathcal{S}^s}$ is better

- ---- Reflection map as auxiliary supervision
- —— Depth map as auxiliary supervision

Depth Maps are More Versatile

Semantic Attribute Matters

Benchmark

Benchmarks

Intra-Dataset

Cross-Domain

Cross-Dataset

Benchmarks

Intra-dataset Benchmark

Model Back	Backbone	khone Parm (MB)	Recall (%)↑		AUC↑	EER (%)1	APCER (%)	BPCER (%)	ACER (%)	
moder	Dackbolle	ram. (MD)	$\mathrm{FPR}=1\%$	$\mathrm{FPR}=0.5\%$	$\mathrm{FPR}=0.1\%$	1001	ын (70)₽	ли оци (70)‡	ы они (70)‡	поци (70)ф
Auxiliary [*] [23]	-	22.1	97.3	95.2	83.2	0.9972	1.2	5.71	1.41	3.56
BASN [16]	VGG16	569.7	98.9	97.8	90.9	0.9991	1.1	4.0	1.1	2.6
$\operatorname{AENet}_{\mathcal{C},\mathcal{S},\mathcal{G}}$	$\operatorname{ResNet-18}$	42.7	98.9	97.3	87.3	0.9989	0.9	2.29	0.96	1.63

Cross-Domain Benchmark

Protocol	Model	Recall (%) \uparrow		AUC↑	EER (%)1	APCER (%).	BPCER (%)	ACER (%)	
11010001 1110101		$\mathrm{FPR}=1\%$	$\mathrm{FPR}=0.5\%$	$\mathrm{FPR}=0.1\%$		(70)¥		21 0 21 (70)¥	
	Baseline	93.7	86.9	69.6	0.996	2.5	5.7	2.52	4.11
1	$\operatorname{AENet}_{\mathcal{C},\mathcal{G}}$	93.3	88.6	74.0	0.994	2.5	5.28	2.41	3.85
	$\operatorname{AENet}_{\mathcal{C},\mathcal{S}}$	93.4	89.3	71.3	0.996	2.4	5.63	2.42	4.04
	$\operatorname{AENet}_{\mathcal{C},\mathcal{S},\mathcal{G}}$	95.0	91.4	73.6	0.995	2.1	4.09	2.09	3.09
	Baseline	#	#	#	$0.998\ {\pm}0.002$	$1.5 {\pm} 0.8$	8.53 ± 2.6	$1.56 {\pm} 0.81$	5.05 ± 1.42
2	$\operatorname{AENet}_{\mathcal{C},\mathcal{G}}$	#	#	#	$0.995 {\pm} 0.003$	$1.6{\pm}4.5$	$8.95 {\pm} 1.07$	$1.67 {\pm} 0.9$	$5.31{\pm}0.95$
	$\operatorname{AENet}_{\mathcal{C},\mathcal{S}}$	#	#	#	$0.997 {\pm} 0.002$	$1.2 {\pm} 0.7$	$4.01{\pm}2.9$	$1.24{\pm}0.67$	$3.96{\pm}1.79$
	AENet _{C.S.G}	#	#	#	$0.998 {\pm} 0.002$	$1.3{\pm}0.7$	4.94 ± 3.42	$1.24{\pm}0.73$	$3.09{\pm}2.08$

Cross-Dataset Benchmark

Model	Training	Testing	HTER (%) \downarrow
FAS-TD-SF [34]	SiW	CASIA-MFSD	39.4
FAS-TD-SF [34]	CASIA-SURF	CASIA-MFSD	37.3
$AENet_{C,S,G}$	SiW	CASIA-MFSD	27.6
Baseline	CelebA-Spoof	CASIA-MFSD	14.3
$AENet_{C,G}$	CelebA-Spoof	CASIA-MFSD	14.1
$AENet_{C,S}$	CelebA-Spoof	CASIA-MFSD	12.1
AENet _{C,S,G}	CelebA-Spoof	CASIA-MFSD	11.9

CelebA-Spoof

Large-Scale

Collection Dimensions

Collection Dimensions

Angle

Input Sensor

Shape

Rich Annotations

Rich Annotations

Illumination Condition		Spoof Type	Environment	
Normal	Strong	Photo Poster A4	Indoor	
		Face Upper Body Region Mask Mask Mask		
Back	Dark	PC Tablet Phone 3D Mask	Outdoor	

Github Page: https://github.com/Davidzhangyuanhan/CelebA-Spoof

Robust Sensing CelebA-Spoof

Synthesizing across Modalities Sep-Stereo

Understanding beyond Recognition

Placepedia

Open World Learning Open Compound Domain Adaptation

Placepedia: Comprehensive Place Understanding with Multi-Faceted Annotations

Huaiyi Huang, Yuqi Zhang, Qingqiu Huang, Zhengkui Guo, Ziwei Liu, Dahua Lin

The Chinese University of Hong Kong

Dataset Overview

- Place is an important element in visual understanding.
 - Functionality
 - Cultural style
 - Economic type
- Comprehensive place understanding
 - Far beyond categorizing a place with an image
 - Requires information of multiple aspects

Dataset Overview

...

Get Very Rich Data of Place

- Wikivoyage!
- 360K places of 25K cities
- Lots of meta data

North America > United States of America > California > Bay Are > San Francisco > San Francisco/Chinatown–North Beach

Chinatown & North Beach

Understand · Get in · Get around · See · Do · Buy · Eat · Drink · Sleep · Connect · Stay safe · Go next

See [edit][add listing]

The listings in this article are geographically organized in roughly a south-to-north direction; meaning that they start with Chinatown firs

Stockton Street Produce Markets, Stockton St (*runs parallel to Grant Ave, one block west* — *between Sacramento St and Vallejo St*). concentration of Chinese shops and Chinese shoppers can be found in the three blocks from Washington to Broadway. They are noto: Tangerines are important during Chinese New Years. You may need a gut check as well in the live produce markets — there are all ki on weekdays; weekends are even more crowded, when Chinese families that have moved up to the suburbs return for shopping on St 6PM, but the eateries will remain open into the evening hours. edit

Chinatown Alleys. Though Grant Avenue has a lot to offer, it is quite touristy; thus, it is essential that you examine the more authenti-Lane, and Ross Alley, between Grant and Stockton. Ross Alley is the oldest alley in the city and many movies have had scenes shot h got a real old–world feel and you will hear Cantonese conversations and the clicking sound of mahjong tiles being shuffled. edit

2 City Lights Bookstore @, 261 Columbus Ave (at Broadway St), @ +1-415-362-8193, fax: +1-415-362-4921. 10AM-midnight daily. of the centers of the Beat community in the 1950s. It's iconic and has become synonymous with the literati Beat movement. On, don't prose and poetry. Why not buy a copy of *On the Road* while you're there — you won't find a better place to get it! III we edit **3** Jack Kerouac Alley, Jack Kerouac Alley (at Columbus Ave and Broadway St). This tiny paved pedestrian alley was named after the the alley a lot. It was intended to ferm a literary (and actual) connection between the communities of Chinatown and North Beach. Th Chinese and Western poems from Kerouac, Confucius and John Steinbeck among others. III we edit

4 Telegraph Hill. Telegraph Hill earned its name in the days of the Gold Rush when it was used as a signaling post to relay message in 1933 and rewards a weary trave ar with some wonderful views over the city. Over time a quiet residential neighborhood built up alo something to admire on your way up or down. Other neighbors include a colony of colorful feral parrots, predominantly red-masked pets. One can drive to the top, but it's better to take one of the narrow steps leading up and down the sides of the hill (including the we edit

• **5** Filbert Steps. The Filbert Steps are the part of Filbert Street that runs between Battery Street and Telegraph Hill Boulevard in I though somewhat strenuous — route for visitors of the tower. In fact, following the steps is at times faster than driving to Coit To site. Visitors of the steps will see public gardens, stylish homes and views of North Beach and the bay; if a path is not gated or sp Also, it pays to be adventurous some of the best gardens and views are off the stairs. Finally, there is more than one way up and return leg. Just avoid private property. edit

Museums and galleries [edt][add listing]

 6 Chinese Culture Center , 750 Kearny St, 3rd floor (*From Portsmouth* 3q: just walk across the footbridge that crosses Kearny St info@c-c-c.org. Tu-Sa 10AM-4PM. The center was established in order to promote understanding of Chinese and Chinese Americ; changing Chinese art exhibitions. Free. III W edit

Get Very Rich Data of Place

- Some are not place. Refine the place list!
 - It has the attribute GPS coordinates or address
 - It is identified as a location by Google Entity Recognition [1] or Stanford Entity Recognition [2]

• **1** Grant Plaza Hotel
^a, 465 Grant Ave (*at Pine St*),
^a +1–415–434–3883, fax: +1–41 2 night stay. Rates are reasonable. Make sure you ask for one of the outside rooms
Is a place.

Chinese New Year Festivities 2. Jan or Feb. Celebrated for over 5,000 years, _____ Is not a place.

• Remains 320K places

[1] https://cloud.google.com/natural-language

Get Very Rich Data of Place

• Google Image open source

- 240K places
- 35M images

Ngong Ping 360 - Meeting and ... mehongkong.com

Cable Car | A Must-See Lantau Island .. np360.com.hk

Ngong Ping 360 Crystal Cabin ... tapmytrip.com · In stock

Challenges

1) Daytime to nighttime

2) Different angles

3) Inside and Outside

Comprehensive Place Understanding

- Benchmarks
 - Datasets:
 - Places-Coarse: 26K places
 - Places-Fine: 1K places
 - Tasks:
 - Place Retrieval (determine if two images belong the same place)
 - Place Categorization (classify places into categories like museums, parks, churches, and temples)
 - Function Categorization (classify places by their functionality such as eat, sleep, see, buy, and so on)
 - City/Country Recognition (classify places into their cities or countries)

A unified Framework to Predict All Tasks

 Duplicate the last convolution/pooling/fc layers of ResNet50 to five branches

Findings

Parks Franklin Park

> Parks Franklin Park

Parks Parque México

Parks Parque Ecológico do Tietê

Ground Truth

Eat

Museums

Museums

Buy

Pubs

Category Recognition Place Retrieval

Category Recognition

Function Categorization

City Embedding

- For vision:
 - Using place images
 - Extract the feature from the city recognition model
- For text:
 - Using city descriptions
 - Embed the content of texts into numeric space based on Bert pre-defined model
- For both vision & text: concatenate two vectors above

City Embedding Visualization

City Embedding

- City description
- Calculate the weights
 - Economic
 - Cultural
 - Political as in [1]
- Pearson correlation
- Compare with neuron

[1] Son, J.S., Thill, J.C.: Is your city economic, cultural, or political? recognition of city image based on multidimensional scaling of quantified web pages. In: Spatial Analysis and Location Modeling in Urban and Regional Systems, pp. 63–95. Springer (2018)

Conclusion

- A large-scale place dataset
 - comprehensively annotated with multiple aspects
- Explore place understanding
 - Build several benchmarks and study a unified model to recognize places
 - Remains lots of challenges
- Learn city embedding representations
 - Learning from both visual & textual domains can better characterize a city
 - Economic/cultural/political elements could be expressed in different types of images

Placepedia: Comprehensive Place Understanding with Multi-Faceted Annotations

Project page: https://hahehi.github.io/placepedia.html

Code and models: https://github.com/hahehi/placepedia

Robust Sensing CelebA-Spoof

Synthesizing across Modalities Sep-Stereo

Understanding beyond Recognition Placepedia

Open World Learning Open Compound Domain Adaptation

Sep-Stereo: Visually Guided Stereophonic Audio Generation by Associating Source Separation

Hang Zhou*, Xudong Xu*, Dahua Lin, Xiaogang Wang, Ziwei Liu

CUHK – SenseTime Joint Lab, The Chinese University of Hong Kong

Prior Works: Fully Supervised Training

Limitation: Stereophonic Data Collection

Data collection equipment in: 2.5d Visual Sound

(a) Dummy Head Recording

(b) Binaural Microphone

Mono Audios in Source Separation

The Sound of Pixels (ECCV 2018)

Co-Separating Sounds of Visual Objects (ICCV 2019)

 Massively availed mono audios have been successfully used in the field of source separation.

Key Insight: Regard the problem of separating two audios as an extreme case of creating binaural audio

Key Insight: Regard the problem of separating two audios as an extreme case of creating binaural audio

 Mono audios can be used to facilitate the generation of stereo audio.

A Unified Framework: Sep-Stereo

Stereophonic Learning

Stereophonic Learning

Training Data Settings: Same as 2.5D Visual Sound. **Base Network:** Same as 2.5D Visual Sound.

Visual Feature: Kept as 14x7 feature map.

Separative Learning

Separative Learning

Training Data Settings: Same as Sound of Pixels. **Base Network:** Same as 2.5D Visual Sound.

Visual Feature: Max-pooled and rearranged.

Difference: Visual Feature Rearrangement

Associative Pyramid Network

Associative Pyramid Network

• Associative Pyramid Network better associates the visual features and the audio features with a learned Associative-Conv operation.

$$F_{ap}^{i'} = \underset{K_v^i}{\operatorname{Conv}2d}(F_a^i)$$
$$F_{ap}^i = \operatorname{Cat}([\operatorname{DeConv}(F_{ap}^{i-1}), F_{ap}^{i'}])$$

Mono audio helps stereo audio generation

 Extensive experiments demonstrate that Sep-Stereo can achieve better performance on the task of stereo audio generation with the help of mono audio data.

	Training Data		FAIR-Play		YT-Music	
Method	Stereo	Mono	STFT_D	ENV_D	STFT_D	ENV_D
Mono2Binaural	1	X	0.959	0.141	1.346	0.179
Baseline (MUSIC)	1	1	0.930	0.139	1.308	0.175
Assoicative-Conv	1	X	0.893	0.137	1.147	0.150
APNet	1	X	0.889	0.136	1.070	0.148
Sep-Stereo (Ours)	1	1	0.879	0.135	1.051	0.145

Demo Results

For **stereo**, we compare our results with Mono2Binaural (model of 2.5D Visual Sound), we show the mono input, results from two models and the ground truth.

For **separation**, we compare with PixelPlayer (Sound of Pixels).

Results on MUSIC duets demonstrate the generalization of our method.

Demo Results

Better watch with HIGH QUALITY earphones or headphones

Future Work

- Separation:
 - Universal separation, tackling music and speech, even general sound with one model.
 - Adopt the ideas from state-of-the-art audio source separation for the pursuit of models with more capacity.
 - Exploring the task of visually guided audio generation and separation together.
- Stereo:
 - The problem of overfitting still remains unsolved.
 - How to incorporate the setting of the room into the generation of stereo.

Project page: https://hangz-nju-cuhk.github.io/projects/Sep-Stereo

Code and models: https://github.com/SheldonTsui/SepStereo_ECCV2020

Robust Sensing CelebA-Spoof

Synthesizing across Modalities Sep-Stereo

Understanding beyond Recognition Placepedia

Open World Learning

Open Compound Domain Adaptation

Open Compound Domain Adaptation

Ziwei Liu* Zhongqi Miao* Xingang Pan Xiaohang Zhan Dahua Lin Stella X. Yu Boqing Gong

The Chinese University of Hong Kong

Simulation

Simulation

Open World Driving Conditions

-> Traditional DA assumes prior access to domain data during training

1) Open Unknown Domains

-> Traditional DA assumes prior access to domain data during training

Simulation

Open World Driving Conditions

Compound Targets

Open Targets

Simulation

• • •

Cloudy

. . .

Open World Driving Conditions

Rainy

Overcast

Continuous Adaptation

Compound Targets

Open Targets

Simulation

. . .

Open World Driving Conditions

Cloudy

Rainy

Overcast

domain memory

Continuous Adaptation

instance-wise curriculum

Compound Targets

Open Targets

Simulation

Open World Driving Conditions

Continuous Adaptation

Compound Targets

Open Targets

Open Compound Domain Digits Classification

Adversarial Domain Characteristics Disentanglement

$$\min_{E_{domain}} -\sum_{i} z^{i}_{random} \log D(E_{domain}(x^{i}))$$

 \min_{D}

$$-\sum_{i} y^{i} \log D(E_{domain}(x^{i}))$$

Memory-Augmented Domain Indicator

 $v_{transfer} = v_{direct} + e_{domain} \otimes v_{enhance}$

SourceCompound Targets
instance-wise curriculumOpen Targets
domain memoryImage: Domain
DisentanglementImage: Domain
Image: DisentanglementImage: DisentanglementImage: DisentanglementImage: Domain
DisentanglementImage: DisentanglementImage: DisentanglementImage: DisentanglementImage: Domain
Domain
DisentanglementImage: DisentanglementImage: DisentanglementImage: DisentanglementImage: Domain
Domain
DisentanglementImage: DisentanglementImage: DisentanglementImage: DisentanglementImage: Domain
Domain
DisentanglementImage: DisentanglementImage: DisentanglementImage: DisentanglementImage: Domain
Domain
DisentanglementImage: DisentanglementImage: DisentanglementImage: DisentanglementImage: Domain
Domain
DomainImage: DisentanglementImage: DisentanglementImage: DisentanglementImage: Domain
DomainImage: DisentanglementImage: DisentanglementImage: DisentanglementImage: Domain
Domain<t

C-Digits Benchmark Absolute Performance Gain: ~5%

C-Faces Benchmark Absolute Performance Gain: ~10%

C-Driving Benchmark Absolute Performance Gain: ~2%

C-Mazes Benchmark Absolute Performance Gain: ~30%

Robustness to the complexity of compound domains and open domains

Adaptation Results on C-Driving

(semantic segmentation)

Source Domain (Simulation)

Compound Target Domain (Rainy)

Ours

Open Target Domain (Overcast)

Source Only

Adaptation Results on C-Mazes

(reinforcement learning)

Source Domain

(succeed)

Open Target Domain 1

(succeed)

Ours (succeed)

Open Target Domain 2

(succeed)

New Task Open Compound Domain Adaptation(OCDA)

New Approach

Instance-wise Curriculum + Domain Memory

New Benchmarks C-Digits, C-Faces, C-Driving, and C-Mazes

Code, models and benchmarks are available at

Project Page: https://liuziwei7.github.io/projects/CompoundDomain.html

What's Next

"Devils are in the Tails" "Blessing of Dimension" "Ghost in the Shell"

Thanks!

Science is what we understand well enough to explain to a computer. Art is everything else we do.

Homepage: <u>https://liuziwei7.github.io/</u>