

Collaborative Online Deep Clustering for Unsupervised Representation Learning

Xiaohang Zhan¹, Jiahao Xie², Ziwei Liu¹, Yew Soon Ong², Chen Change Loy²

¹Multimedia Laboratory, The Chinese University of Hong Kong ²Nanyang Technological University

Facebook AI Self-Supervision Challenge

• We win all four tracks in self-supervision challenge 2019.

Rank 🗢	Participant team 🜲	mAP 🌲	Last submission at 🜲
1	MMLab-SelfSup (res50,in1k)	79.82	11 days ago
2	Leapfrog (vgg_conv13)	76.59	11 days ago
3	arkenstone	71.90	17 days ago
4	JLiangLab	64.47	1 month ago

Rank 🜲	Participant team 🜲	mAP 🌲	Last submission at 🜲
1	MMLab-SelfSup (res50,in1k)	57.10	11 days ago
2	Leapfrog (vgg_conv13)	53.76	11 days ago

Deep Clustering

Low efficiency when trained on ImageNet

[1] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised learning of visual features. In ECCV 2018.

Deep Clustering

For each epoch:

- 1. extract features of the whole training set 🛛 🖛 extra overhead
- 2. perform clustering and assign new labels
- 3. randomly initialize the classifier
- 4. jointly train CNN + classifier

[1] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised learning of visual features. In ECCV 2018.

long time to converge

Online Deep Clustering (Ours)

For each iteration, with a batch of images:

Centroids Memory

1. network forward;

2. read labels from samples memory, perform back-propagation to update the CNN;

- 3. update samples memory: update features, re-assign new labels of this batch;
- 4. update centroids memory: re-computing involved centroids.

Online Deep Clustering (Ours)

- Loss Re-weighting.
 - Weights are set in each iteration
 - Loss weight: $w_c \propto \frac{1}{\sqrt{N_c}}$
 - To avoid ODC from drifting into a few huge clusters
- Dealing with Small Clusters.
 - Perform in each iteration.
 - Procedure:
 - Repeat until no small clusters exist:
 - 1. Find a small cluster C;
 - 2. Disperse samples in C to other normal clusters to make it empty;
 - 3. Split the largest normal cluster into two parts by K-Means;
 - 4. Randomly choose one part as the new C.

[2] Ziwei Liu, et al. "Large-Scale Long-Tailed Recognition in an Open World." CVPR. 2019.

ODC v.s. DC

Benefits:

- The features are stored and continuously updated → No longer need adhoc feature extraction. → faster
- 2. The labels are instantly re-assigned in each iteration rather than in each epoch. \rightarrow avoids unnecessary back-propagation at the start when labels are noisy \rightarrow faster
- The assigned labels are updated smoothly → The classifier evolves steadily
 → faster and better

Backbone	Devices	Time	VOC07 (SVM)
DC (AlexNet)	P100 (x1)	12 days	-
DC (ResNet-50)	GTX 1080TI (x8)	10 days	69.12
ODC (ResNet-50)	GTX 1080TI (x8)	2.7 days	69.79

Avoiding "Shortcut" Solutions

• Color Removal (to avoid clustering according to colors)

• Patch gaps (to avoid exploring edge continuity)

Color jittering (to avoid exploring chromatic aberration)

Summary

- Deep clustering
 - Learn: inter-image relationships
 - Shortcut: clustering based on color information
- Colorization
 - Learn: color distribution of different semantic regions
 - Shortcut: simply relying on textures
- Jigsaw Puzzles / Context Prediction
 - Learn: intra-image structures
 - Shortcut: exploring edge continuity, chromatic aberration
- Rotation Prediction
 - Learn: orientation distribution
 - Ambiguity: objects without default orientations

How about allowing these approaches to constrain each other?

Collaborative Online Deep Clustering (Ours)

Experiments

	CODC (2 models)		CODC (3 models)		
components	DC	ROT	DC	ROT	CLS
before CODC	69.12	67.35	69.12	67.35	77.7
after CODC	75.79	74.54	76.48	72.94	78.05
concatenate	76.33		79.82		

Table 2. Ablation study on VOC2007 SVM classification.

DC: Deep Clustering

ROT: Rotation Prediction

CLS: Mixup Classification with clustering results.

Thank you for listening!

Recent works from our group on self-supervised learning:

- 1. Mix-and-Match Tuning for Self-Supervised Semantic Segmentation, AAAI 2018
- 2. Consensus-Driven Propagation in Massive Unlabeled Data for Face Recognition, ECCV 2018
- 3. Self-Supervised Learning via Conditional Motion Propagation, CVPR 2019