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Facebook	AI	Self-Supervision	Challenge

• We	win	all	four	tracks	in	self-supervision	challenge	2019.		



Deep	Clustering

[1]	Mathilde Caron,	Piotr	Bojanowski,	Armand	Joulin,	and	Matthijs Douze.	Deep	clustering	for	unsupervised	learning	
of	visual	features.	In	ECCV	2018.

Backbone Devices Time

AlexNet P100	(x1) 12	days

ResNet-50 GTX	1080TI	(x8) 10	days

Low	efficiency	when	trained	on	ImageNet



Deep	Clustering

For	each	epoch:
1.	extract	features	of	the	whole	training	set
2.	perform	clustering	and	assign	new	labels
3.	randomly	initialize	the	classifier
4.	jointly	train	CNN	+	classifier

extra	overhead

long	time	to	converge

[1]	Mathilde Caron,	Piotr	Bojanowski,	Armand	Joulin,	and	Matthijs Douze.	Deep	clustering	for	unsupervised	learning	
of	visual	features.	In	ECCV	2018.
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Online	Deep	Clustering	(Ours)

For	each	iteration,	with	a	batch	of	images:
1.	network	forward;
2.	read	labels	from	samples	memory,	perform	back-propagation	to	update	the	CNN;
3.	update	samples	memory:	update	features,	re-assign	new	labels	of	this	batch;
4.	update	centroids	memory:	re-computing	involved	centroids.



Online	Deep	Clustering	(Ours)
• Loss	Re-weighting.
• Weights	are	set	in	each	iteration
• Loss	weight:	𝑤" ∝

$
%&�

• To	avoid	ODC	from	drifting	into	a	few	huge	clusters

Repeat	until	no	small	clusters	exist:
1.	Find	a	small	cluster	C;
2.	Disperse	samples	in	C	to	other	normal	clusters	to	make	it	empty;
3.	Split	the	largest	normal	cluster	into	two	parts	by	K-Means;
4.	Randomly	choose	one	part	as	the	new	C.

• Dealing	with	Small	Clusters.
• Perform	in	each	iteration.
• Procedure:

[2]	Ziwei	Liu,	et	al.	"Large-Scale	Long-Tailed	Recognition	in	an	Open	World." CVPR.	2019.



ODC	v.s.	DC

Backbone Devices Time VOC07	(SVM)
DC	(AlexNet) P100	(x1) 12	days -
DC	(ResNet-50) GTX	1080TI	(x8) 10	days 69.12
ODC	(ResNet-50) GTX	1080TI	(x8) 2.7 days 69.79

Benefits:
1. The features are stored and continuously updated à No longer need ad-

hoc feature extraction.à faster
2. The labels are instantly re-assigned in each iteration rather than in each

epoch. à avoids unnecessary back-propagation at the start when labels are
noisyà faster

3. The assigned labels are updated smoothly à The classifier evolves steadily
à faster and better



Avoiding	“Shortcut”	Solutions

• Color	Removal	(to	avoid	clustering	according	to	colors)

Sobel

• Patch	gaps	(to	avoid	exploring	
edge	continuity)

• Color	jittering	(to	avoid	exploring	
chromatic	aberration)



Summary
• Deep	clustering
• Learn:	inter-image	relationships
• Shortcut:	clustering	based	on	color	information

• Colorization
• Learn:	color	distribution	of	different	semantic	regions
• Shortcut:	simply	relying	on	textures

• Jigsaw	Puzzles	/	Context	Prediction
• Learn:	intra-image	structures
• Shortcut:	exploring	edge	continuity,	chromatic	aberration

• Rotation	Prediction
• Learn:	orientation	distribution
• Ambiguity:	objects	without	default	orientations

How	about	allowing	
these	approaches	to	
constrain	each	other?



Collaborative	Online	Deep	Clustering	(Ours)

Rotation initialized
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Experiments

DC:	Deep	Clustering
ROT:	Rotation	Prediction
CLS:	Mixup Classification	with	clustering	results.



Thank	you	for	listening!

Recent	works	from	our	group	on	self-supervised	learning:

1. Mix-and-Match	Tuning	for	Self-Supervised	Semantic	Segmentation,	AAAI	2018

2. Consensus-Driven	Propagation	in	Massive	Unlabeled	Data	for	Face	Recognition,	ECCV	2018

3. Self-Supervised	Learning	via	Conditional	Motion	Propagation,	CVPR	2019	


