INTRODUCTION

- More and more fashion related applications have been developed
- Our Objective: To develop a system that automatically verifies clothes

METHODOLOGY

' areer plaid patter

with scar

 with placket low exposure • with long sleeves men's

• low exposure

• with long

sleeves

• women's

Color

- white
- green
- ' brown
- black
- stripe pattern

Data Collection

To collect around 1000-2000 clothing images from the internet

	Labelling							
To label all the images with 23 attributes:								
	black	white	strip pattern	blue				
	yellow	collar	brown	many colors				
	gender	cyan	floral pattern	necktie				
	gray	graphic pattern	placket	green				
	plaid pattern	scarf	purple	solid pattern				
	skin exposure	red	spot pattern					

Training

To train our system with 1856 different labelled clothing images

Testing

To check the performance of our system with 200 different manually labelled clothing images

Feature Extraction

SIFT

HOG

To convert the raw data into vectors of attributes by extracting 4 different features from the images

LBP

				-
				-
_	_	_	_	

Department of Information Engineering ENGG4920C0 Thesis II CLOTHES VERIFICATION 季港中文大學 The Chinese University of Hong Kong

Classification

To classify clothing images into different classes by SVM

Support Vector Machine (SVM)

- To construct hyperplane(s) x_2 in a high-dimensional space
- To generate a margin
- To judge which side of
- margin the feature vectors are on
- Large margin between
- two support hyperplanes
- makes a good
- classification

RESULTS	Accuracy :		the no. of images with matching labels					
			total no. of testing images					
	KNN				SVM			
Attributes	Color	LBP	SIFT	HOG	Color	LBP	SIFT	HOG
black	0.585	0.580	0.615	0.570	0.705	0.614	0.647	0.621
blue	0.900	0.900	0.900	0.845	0.862	0.802	0.776	0.781
brown	0.815	0.780	0.760	0.770	0.820	0.784	0.766	0.777
cyan	0.870	0.900	0.905	0.915	0.920	0.876	0.865	0.870
gray	0.680	0.680	0.680	0.710	0.690	6090.	0.634	0.630
green	0.960	0.950	0.930	0.955	0.905	0.872	0.893	0.881
purple	0.935	0.930	0.935	0.930	0.893	0.890	0.891	0.890
red	0.945	0.940	0.945	0.940	0.911	0.872	0.848	0.852
white	0.720	0.680	0.695	0.630	0.663	0.578	0.649	0.587
yellow	0.930	0.925	0.925	0.935	0.943	0.907	0.915	0.910
many colors	0.920	0.920	0.920	0.920	0.796	0.795	0.773	0.780
collar	0.535	0.530	0.535	0.510	0.638	0.571	0.646	0.593
gender	0.545	0.570	0.535	0.590	0.658	0.646	0.638	0.636
necktie	0.865	0.820	0.810	0.800	0.786	0.763	0.766	0.762
floral pattern	0.975	0.980	0.985	0.985	0.923	0.935	0.929	0.925
graphic pattern	0.980	0.960	0.940	0.990	0.927	0.922	0.950	0.926
plaid pattern	0.935	0.903	0.895	0.880	0.863	0.862	0.858	0.855
solid pattern	0.540	0.603	0.605	0.650	0.679	0.682	0.711	0.681
spot pattern	0.975	0.980	0.980	0.980	0.876	0.906	0.918	0.882
stripe pattern	0.945	0.925	0.930	0.930	0.841	0.876	0.880	0.832
placket	0.650	0.620	0.580	0.595	0.703	0.664	0.703	0.675
scarf	0.770	0.770	0.745	0.755	0.720	0.685	0.716	0.692
skin exposure	0.875	0.880	0.875	0.905	0.800	0.755	0.786	0.761

- generally similar

- accuracy

 Only color and pattern attributes have high accuracy • May be affected by irrelevant info from the background

Comparing Results by KNN and SVM

• some results from SVM model have higher accuracy

• e.g. collar, gender, solid pattern, placket

• process time of SVM is much faster than KNN

Conclusion

• differentiation of colors and patterns by SVM has the highest

• use color differentiation as our project's main feature